GRAYBYTE WORDPRESS FILE MANAGER7774

Server IP : 198.54.121.189 / Your IP : 216.73.216.140
System : Linux premium69.web-hosting.com 4.18.0-553.44.1.lve.el8.x86_64 #1 SMP Thu Mar 13 14:29:12 UTC 2025 x86_64
PHP Version : 7.4.33
Disable Function : NONE
cURL : ON | WGET : ON | Sudo : OFF | Pkexec : OFF
Directory : /opt/alt/python33/lib64/python3.3/
Upload Files :
Current_dir [ Not Writeable ] Document_root [ Writeable ]

Command :


Current File : /opt/alt/python33/lib64/python3.3//random.py
"""Random variable generators.

    integers
    --------
           uniform within range

    sequences
    ---------
           pick random element
           pick random sample
           generate random permutation

    distributions on the real line:
    ------------------------------
           uniform
           triangular
           normal (Gaussian)
           lognormal
           negative exponential
           gamma
           beta
           pareto
           Weibull

    distributions on the circle (angles 0 to 2pi)
    ---------------------------------------------
           circular uniform
           von Mises

General notes on the underlying Mersenne Twister core generator:

* The period is 2**19937-1.
* It is one of the most extensively tested generators in existence.
* The random() method is implemented in C, executes in a single Python step,
  and is, therefore, threadsafe.

"""

from warnings import warn as _warn
from types import MethodType as _MethodType, BuiltinMethodType as _BuiltinMethodType
from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
from os import urandom as _urandom
from collections.abc import Set as _Set, Sequence as _Sequence
from hashlib import sha512 as _sha512

__all__ = ["Random","seed","random","uniform","randint","choice","sample",
           "randrange","shuffle","normalvariate","lognormvariate",
           "expovariate","vonmisesvariate","gammavariate","triangular",
           "gauss","betavariate","paretovariate","weibullvariate",
           "getstate","setstate", "getrandbits",
           "SystemRandom"]

NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
TWOPI = 2.0*_pi
LOG4 = _log(4.0)
SG_MAGICCONST = 1.0 + _log(4.5)
BPF = 53        # Number of bits in a float
RECIP_BPF = 2**-BPF


# Translated by Guido van Rossum from C source provided by
# Adrian Baddeley.  Adapted by Raymond Hettinger for use with
# the Mersenne Twister  and os.urandom() core generators.

import _random

class Random(_random.Random):
    """Random number generator base class used by bound module functions.

    Used to instantiate instances of Random to get generators that don't
    share state.

    Class Random can also be subclassed if you want to use a different basic
    generator of your own devising: in that case, override the following
    methods:  random(), seed(), getstate(), and setstate().
    Optionally, implement a getrandbits() method so that randrange()
    can cover arbitrarily large ranges.

    """

    VERSION = 3     # used by getstate/setstate

    def __init__(self, x=None):
        """Initialize an instance.

        Optional argument x controls seeding, as for Random.seed().
        """

        self.seed(x)
        self.gauss_next = None

    def seed(self, a=None, version=2):
        """Initialize internal state from hashable object.

        None or no argument seeds from current time or from an operating
        system specific randomness source if available.

        For version 2 (the default), all of the bits are used if *a* is a str,
        bytes, or bytearray.  For version 1, the hash() of *a* is used instead.

        If *a* is an int, all bits are used.

        """

        if a is None:
            try:
                a = int.from_bytes(_urandom(32), 'big')
            except NotImplementedError:
                import time
                a = int(time.time() * 256) # use fractional seconds

        if version == 2:
            if isinstance(a, (str, bytes, bytearray)):
                if isinstance(a, str):
                    a = a.encode()
                a += _sha512(a).digest()
                a = int.from_bytes(a, 'big')

        super().seed(a)
        self.gauss_next = None

    def getstate(self):
        """Return internal state; can be passed to setstate() later."""
        return self.VERSION, super().getstate(), self.gauss_next

    def setstate(self, state):
        """Restore internal state from object returned by getstate()."""
        version = state[0]
        if version == 3:
            version, internalstate, self.gauss_next = state
            super().setstate(internalstate)
        elif version == 2:
            version, internalstate, self.gauss_next = state
            # In version 2, the state was saved as signed ints, which causes
            #   inconsistencies between 32/64-bit systems. The state is
            #   really unsigned 32-bit ints, so we convert negative ints from
            #   version 2 to positive longs for version 3.
            try:
                internalstate = tuple(x % (2**32) for x in internalstate)
            except ValueError as e:
                raise TypeError from e
            super().setstate(internalstate)
        else:
            raise ValueError("state with version %s passed to "
                             "Random.setstate() of version %s" %
                             (version, self.VERSION))

## ---- Methods below this point do not need to be overridden when
## ---- subclassing for the purpose of using a different core generator.

## -------------------- pickle support  -------------------

    def __getstate__(self): # for pickle
        return self.getstate()

    def __setstate__(self, state):  # for pickle
        self.setstate(state)

    def __reduce__(self):
        return self.__class__, (), self.getstate()

## -------------------- integer methods  -------------------

    def randrange(self, start, stop=None, step=1, _int=int):
        """Choose a random item from range(start, stop[, step]).

        This fixes the problem with randint() which includes the
        endpoint; in Python this is usually not what you want.

        """

        # This code is a bit messy to make it fast for the
        # common case while still doing adequate error checking.
        istart = _int(start)
        if istart != start:
            raise ValueError("non-integer arg 1 for randrange()")
        if stop is None:
            if istart > 0:
                return self._randbelow(istart)
            raise ValueError("empty range for randrange()")

        # stop argument supplied.
        istop = _int(stop)
        if istop != stop:
            raise ValueError("non-integer stop for randrange()")
        width = istop - istart
        if step == 1 and width > 0:
            return istart + self._randbelow(width)
        if step == 1:
            raise ValueError("empty range for randrange() (%d,%d, %d)" % (istart, istop, width))

        # Non-unit step argument supplied.
        istep = _int(step)
        if istep != step:
            raise ValueError("non-integer step for randrange()")
        if istep > 0:
            n = (width + istep - 1) // istep
        elif istep < 0:
            n = (width + istep + 1) // istep
        else:
            raise ValueError("zero step for randrange()")

        if n <= 0:
            raise ValueError("empty range for randrange()")

        return istart + istep*self._randbelow(n)

    def randint(self, a, b):
        """Return random integer in range [a, b], including both end points.
        """

        return self.randrange(a, b+1)

    def _randbelow(self, n, int=int, maxsize=1<<BPF, type=type,
                   Method=_MethodType, BuiltinMethod=_BuiltinMethodType):
        "Return a random int in the range [0,n).  Raises ValueError if n==0."

        getrandbits = self.getrandbits
        # Only call self.getrandbits if the original random() builtin method
        # has not been overridden or if a new getrandbits() was supplied.
        if type(self.random) is BuiltinMethod or type(getrandbits) is Method:
            k = n.bit_length()  # don't use (n-1) here because n can be 1
            r = getrandbits(k)          # 0 <= r < 2**k
            while r >= n:
                r = getrandbits(k)
            return r
        # There's an overriden random() method but no new getrandbits() method,
        # so we can only use random() from here.
        random = self.random
        if n >= maxsize:
            _warn("Underlying random() generator does not supply \n"
                "enough bits to choose from a population range this large.\n"
                "To remove the range limitation, add a getrandbits() method.")
            return int(random() * n)
        rem = maxsize % n
        limit = (maxsize - rem) / maxsize   # int(limit * maxsize) % n == 0
        r = random()
        while r >= limit:
            r = random()
        return int(r*maxsize) % n

## -------------------- sequence methods  -------------------

    def choice(self, seq):
        """Choose a random element from a non-empty sequence."""
        try:
            i = self._randbelow(len(seq))
        except ValueError:
            raise IndexError('Cannot choose from an empty sequence')
        return seq[i]

    def shuffle(self, x, random=None):
        """x, random=random.random -> shuffle list x in place; return None.

        Optional arg random is a 0-argument function returning a random
        float in [0.0, 1.0); by default, the standard random.random.

        """

        if random is None:
            randbelow = self._randbelow
            for i in reversed(range(1, len(x))):
                # pick an element in x[:i+1] with which to exchange x[i]
                j = randbelow(i+1)
                x[i], x[j] = x[j], x[i]
        else:
            _int = int
            for i in reversed(range(1, len(x))):
                # pick an element in x[:i+1] with which to exchange x[i]
                j = _int(random() * (i+1))
                x[i], x[j] = x[j], x[i]

    def sample(self, population, k):
        """Chooses k unique random elements from a population sequence or set.

        Returns a new list containing elements from the population while
        leaving the original population unchanged.  The resulting list is
        in selection order so that all sub-slices will also be valid random
        samples.  This allows raffle winners (the sample) to be partitioned
        into grand prize and second place winners (the subslices).

        Members of the population need not be hashable or unique.  If the
        population contains repeats, then each occurrence is a possible
        selection in the sample.

        To choose a sample in a range of integers, use range as an argument.
        This is especially fast and space efficient for sampling from a
        large population:   sample(range(10000000), 60)
        """

        # Sampling without replacement entails tracking either potential
        # selections (the pool) in a list or previous selections in a set.

        # When the number of selections is small compared to the
        # population, then tracking selections is efficient, requiring
        # only a small set and an occasional reselection.  For
        # a larger number of selections, the pool tracking method is
        # preferred since the list takes less space than the
        # set and it doesn't suffer from frequent reselections.

        if isinstance(population, _Set):
            population = tuple(population)
        if not isinstance(population, _Sequence):
            raise TypeError("Population must be a sequence or set.  For dicts, use list(d).")
        randbelow = self._randbelow
        n = len(population)
        if not 0 <= k <= n:
            raise ValueError("Sample larger than population")
        result = [None] * k
        setsize = 21        # size of a small set minus size of an empty list
        if k > 5:
            setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets
        if n <= setsize:
            # An n-length list is smaller than a k-length set
            pool = list(population)
            for i in range(k):         # invariant:  non-selected at [0,n-i)
                j = randbelow(n-i)
                result[i] = pool[j]
                pool[j] = pool[n-i-1]   # move non-selected item into vacancy
        else:
            selected = set()
            selected_add = selected.add
            for i in range(k):
                j = randbelow(n)
                while j in selected:
                    j = randbelow(n)
                selected_add(j)
                result[i] = population[j]
        return result

## -------------------- real-valued distributions  -------------------

## -------------------- uniform distribution -------------------

    def uniform(self, a, b):
        "Get a random number in the range [a, b) or [a, b] depending on rounding."
        return a + (b-a) * self.random()

## -------------------- triangular --------------------

    def triangular(self, low=0.0, high=1.0, mode=None):
        """Triangular distribution.

        Continuous distribution bounded by given lower and upper limits,
        and having a given mode value in-between.

        http://en.wikipedia.org/wiki/Triangular_distribution

        """
        u = self.random()
        c = 0.5 if mode is None else (mode - low) / (high - low)
        if u > c:
            u = 1.0 - u
            c = 1.0 - c
            low, high = high, low
        return low + (high - low) * (u * c) ** 0.5

## -------------------- normal distribution --------------------

    def normalvariate(self, mu, sigma):
        """Normal distribution.

        mu is the mean, and sigma is the standard deviation.

        """
        # mu = mean, sigma = standard deviation

        # Uses Kinderman and Monahan method. Reference: Kinderman,
        # A.J. and Monahan, J.F., "Computer generation of random
        # variables using the ratio of uniform deviates", ACM Trans
        # Math Software, 3, (1977), pp257-260.

        random = self.random
        while 1:
            u1 = random()
            u2 = 1.0 - random()
            z = NV_MAGICCONST*(u1-0.5)/u2
            zz = z*z/4.0
            if zz <= -_log(u2):
                break
        return mu + z*sigma

## -------------------- lognormal distribution --------------------

    def lognormvariate(self, mu, sigma):
        """Log normal distribution.

        If you take the natural logarithm of this distribution, you'll get a
        normal distribution with mean mu and standard deviation sigma.
        mu can have any value, and sigma must be greater than zero.

        """
        return _exp(self.normalvariate(mu, sigma))

## -------------------- exponential distribution --------------------

    def expovariate(self, lambd):
        """Exponential distribution.

        lambd is 1.0 divided by the desired mean.  It should be
        nonzero.  (The parameter would be called "lambda", but that is
        a reserved word in Python.)  Returned values range from 0 to
        positive infinity if lambd is positive, and from negative
        infinity to 0 if lambd is negative.

        """
        # lambd: rate lambd = 1/mean
        # ('lambda' is a Python reserved word)

        # we use 1-random() instead of random() to preclude the
        # possibility of taking the log of zero.
        return -_log(1.0 - self.random())/lambd

## -------------------- von Mises distribution --------------------

    def vonmisesvariate(self, mu, kappa):
        """Circular data distribution.

        mu is the mean angle, expressed in radians between 0 and 2*pi, and
        kappa is the concentration parameter, which must be greater than or
        equal to zero.  If kappa is equal to zero, this distribution reduces
        to a uniform random angle over the range 0 to 2*pi.

        """
        # mu:    mean angle (in radians between 0 and 2*pi)
        # kappa: concentration parameter kappa (>= 0)
        # if kappa = 0 generate uniform random angle

        # Based upon an algorithm published in: Fisher, N.I.,
        # "Statistical Analysis of Circular Data", Cambridge
        # University Press, 1993.

        # Thanks to Magnus Kessler for a correction to the
        # implementation of step 4.

        random = self.random
        if kappa <= 1e-6:
            return TWOPI * random()

        s = 0.5 / kappa
        r = s + _sqrt(1.0 + s * s)

        while 1:
            u1 = random()
            z = _cos(_pi * u1)

            d = z / (r + z)
            u2 = random()
            if u2 < 1.0 - d * d or u2 <= (1.0 - d) * _exp(d):
                break

        q = 1.0 / r
        f = (q + z) / (1.0 + q * z)
        u3 = random()
        if u3 > 0.5:
            theta = (mu + _acos(f)) % TWOPI
        else:
            theta = (mu - _acos(f)) % TWOPI

        return theta

## -------------------- gamma distribution --------------------

    def gammavariate(self, alpha, beta):
        """Gamma distribution.  Not the gamma function!

        Conditions on the parameters are alpha > 0 and beta > 0.

        The probability distribution function is:

                    x ** (alpha - 1) * math.exp(-x / beta)
          pdf(x) =  --------------------------------------
                      math.gamma(alpha) * beta ** alpha

        """

        # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2

        # Warning: a few older sources define the gamma distribution in terms
        # of alpha > -1.0
        if alpha <= 0.0 or beta <= 0.0:
            raise ValueError('gammavariate: alpha and beta must be > 0.0')

        random = self.random
        if alpha > 1.0:

            # Uses R.C.H. Cheng, "The generation of Gamma
            # variables with non-integral shape parameters",
            # Applied Statistics, (1977), 26, No. 1, p71-74

            ainv = _sqrt(2.0 * alpha - 1.0)
            bbb = alpha - LOG4
            ccc = alpha + ainv

            while 1:
                u1 = random()
                if not 1e-7 < u1 < .9999999:
                    continue
                u2 = 1.0 - random()
                v = _log(u1/(1.0-u1))/ainv
                x = alpha*_exp(v)
                z = u1*u1*u2
                r = bbb+ccc*v-x
                if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
                    return x * beta

        elif alpha == 1.0:
            # expovariate(1)
            u = random()
            while u <= 1e-7:
                u = random()
            return -_log(u) * beta

        else:   # alpha is between 0 and 1 (exclusive)

            # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle

            while 1:
                u = random()
                b = (_e + alpha)/_e
                p = b*u
                if p <= 1.0:
                    x = p ** (1.0/alpha)
                else:
                    x = -_log((b-p)/alpha)
                u1 = random()
                if p > 1.0:
                    if u1 <= x ** (alpha - 1.0):
                        break
                elif u1 <= _exp(-x):
                    break
            return x * beta

## -------------------- Gauss (faster alternative) --------------------

    def gauss(self, mu, sigma):
        """Gaussian distribution.

        mu is the mean, and sigma is the standard deviation.  This is
        slightly faster than the normalvariate() function.

        Not thread-safe without a lock around calls.

        """

        # When x and y are two variables from [0, 1), uniformly
        # distributed, then
        #
        #    cos(2*pi*x)*sqrt(-2*log(1-y))
        #    sin(2*pi*x)*sqrt(-2*log(1-y))
        #
        # are two *independent* variables with normal distribution
        # (mu = 0, sigma = 1).
        # (Lambert Meertens)
        # (corrected version; bug discovered by Mike Miller, fixed by LM)

        # Multithreading note: When two threads call this function
        # simultaneously, it is possible that they will receive the
        # same return value.  The window is very small though.  To
        # avoid this, you have to use a lock around all calls.  (I
        # didn't want to slow this down in the serial case by using a
        # lock here.)

        random = self.random
        z = self.gauss_next
        self.gauss_next = None
        if z is None:
            x2pi = random() * TWOPI
            g2rad = _sqrt(-2.0 * _log(1.0 - random()))
            z = _cos(x2pi) * g2rad
            self.gauss_next = _sin(x2pi) * g2rad

        return mu + z*sigma

## -------------------- beta --------------------
## See
## http://mail.python.org/pipermail/python-bugs-list/2001-January/003752.html
## for Ivan Frohne's insightful analysis of why the original implementation:
##
##    def betavariate(self, alpha, beta):
##        # Discrete Event Simulation in C, pp 87-88.
##
##        y = self.expovariate(alpha)
##        z = self.expovariate(1.0/beta)
##        return z/(y+z)
##
## was dead wrong, and how it probably got that way.

    def betavariate(self, alpha, beta):
        """Beta distribution.

        Conditions on the parameters are alpha > 0 and beta > 0.
        Returned values range between 0 and 1.

        """

        # This version due to Janne Sinkkonen, and matches all the std
        # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
        y = self.gammavariate(alpha, 1.)
        if y == 0:
            return 0.0
        else:
            return y / (y + self.gammavariate(beta, 1.))

## -------------------- Pareto --------------------

    def paretovariate(self, alpha):
        """Pareto distribution.  alpha is the shape parameter."""
        # Jain, pg. 495

        u = 1.0 - self.random()
        return 1.0 / u ** (1.0/alpha)

## -------------------- Weibull --------------------

    def weibullvariate(self, alpha, beta):
        """Weibull distribution.

        alpha is the scale parameter and beta is the shape parameter.

        """
        # Jain, pg. 499; bug fix courtesy Bill Arms

        u = 1.0 - self.random()
        return alpha * (-_log(u)) ** (1.0/beta)

## --------------- Operating System Random Source  ------------------

class SystemRandom(Random):
    """Alternate random number generator using sources provided
    by the operating system (such as /dev/urandom on Unix or
    CryptGenRandom on Windows).

     Not available on all systems (see os.urandom() for details).
    """

    def random(self):
        """Get the next random number in the range [0.0, 1.0)."""
        return (int.from_bytes(_urandom(7), 'big') >> 3) * RECIP_BPF

    def getrandbits(self, k):
        """getrandbits(k) -> x.  Generates an int with k random bits."""
        if k <= 0:
            raise ValueError('number of bits must be greater than zero')
        if k != int(k):
            raise TypeError('number of bits should be an integer')
        numbytes = (k + 7) // 8                       # bits / 8 and rounded up
        x = int.from_bytes(_urandom(numbytes), 'big')
        return x >> (numbytes * 8 - k)                # trim excess bits

    def seed(self, *args, **kwds):
        "Stub method.  Not used for a system random number generator."
        return None

    def _notimplemented(self, *args, **kwds):
        "Method should not be called for a system random number generator."
        raise NotImplementedError('System entropy source does not have state.')
    getstate = setstate = _notimplemented

## -------------------- test program --------------------

def _test_generator(n, func, args):
    import time
    print(n, 'times', func.__name__)
    total = 0.0
    sqsum = 0.0
    smallest = 1e10
    largest = -1e10
    t0 = time.time()
    for i in range(n):
        x = func(*args)
        total += x
        sqsum = sqsum + x*x
        smallest = min(x, smallest)
        largest = max(x, largest)
    t1 = time.time()
    print(round(t1-t0, 3), 'sec,', end=' ')
    avg = total/n
    stddev = _sqrt(sqsum/n - avg*avg)
    print('avg %g, stddev %g, min %g, max %g' % \
              (avg, stddev, smallest, largest))


def _test(N=2000):
    _test_generator(N, random, ())
    _test_generator(N, normalvariate, (0.0, 1.0))
    _test_generator(N, lognormvariate, (0.0, 1.0))
    _test_generator(N, vonmisesvariate, (0.0, 1.0))
    _test_generator(N, gammavariate, (0.01, 1.0))
    _test_generator(N, gammavariate, (0.1, 1.0))
    _test_generator(N, gammavariate, (0.1, 2.0))
    _test_generator(N, gammavariate, (0.5, 1.0))
    _test_generator(N, gammavariate, (0.9, 1.0))
    _test_generator(N, gammavariate, (1.0, 1.0))
    _test_generator(N, gammavariate, (2.0, 1.0))
    _test_generator(N, gammavariate, (20.0, 1.0))
    _test_generator(N, gammavariate, (200.0, 1.0))
    _test_generator(N, gauss, (0.0, 1.0))
    _test_generator(N, betavariate, (3.0, 3.0))
    _test_generator(N, triangular, (0.0, 1.0, 1.0/3.0))

# Create one instance, seeded from current time, and export its methods
# as module-level functions.  The functions share state across all uses
#(both in the user's code and in the Python libraries), but that's fine
# for most programs and is easier for the casual user than making them
# instantiate their own Random() instance.

_inst = Random()
seed = _inst.seed
random = _inst.random
uniform = _inst.uniform
triangular = _inst.triangular
randint = _inst.randint
choice = _inst.choice
randrange = _inst.randrange
sample = _inst.sample
shuffle = _inst.shuffle
normalvariate = _inst.normalvariate
lognormvariate = _inst.lognormvariate
expovariate = _inst.expovariate
vonmisesvariate = _inst.vonmisesvariate
gammavariate = _inst.gammavariate
gauss = _inst.gauss
betavariate = _inst.betavariate
paretovariate = _inst.paretovariate
weibullvariate = _inst.weibullvariate
getstate = _inst.getstate
setstate = _inst.setstate
getrandbits = _inst.getrandbits

if __name__ == '__main__':
    _test()

[ Back ]
Name
Size
Last Modified
Owner / Group
Permissions
Options
..
--
May 20 2024 08:33:11
root / root
0755
__pycache__
--
May 20 2024 08:31:19
root / linksafe
0755
collections
--
May 20 2024 08:31:19
root / linksafe
0755
concurrent
--
May 20 2024 08:31:19
root / linksafe
0755
config-3.3m
--
May 20 2024 08:33:11
root / linksafe
0755
ctypes
--
May 20 2024 08:31:19
root / linksafe
0755
curses
--
May 20 2024 08:31:19
root / linksafe
0755
dbm
--
May 20 2024 08:31:19
root / linksafe
0755
distutils
--
May 20 2024 08:31:19
root / linksafe
0755
email
--
May 20 2024 08:31:19
root / linksafe
0755
encodings
--
May 20 2024 08:31:19
root / linksafe
0755
html
--
May 20 2024 08:31:19
root / linksafe
0755
http
--
May 20 2024 08:31:19
root / linksafe
0755
idlelib
--
May 20 2024 08:31:19
root / linksafe
0755
importlib
--
May 20 2024 08:31:19
root / linksafe
0755
json
--
May 20 2024 08:31:19
root / linksafe
0755
lib-dynload
--
May 20 2024 08:31:19
root / linksafe
0755
lib2to3
--
May 20 2024 08:31:19
root / linksafe
0755
logging
--
May 20 2024 08:31:19
root / linksafe
0755
multiprocessing
--
May 20 2024 08:31:19
root / linksafe
0755
plat-linux
--
May 20 2024 08:31:19
root / linksafe
0755
pydoc_data
--
May 20 2024 08:31:19
root / linksafe
0755
site-packages
--
May 20 2024 08:31:19
root / linksafe
0755
sqlite3
--
May 20 2024 08:31:19
root / linksafe
0755
test
--
May 20 2024 08:31:19
root / linksafe
0755
unittest
--
May 20 2024 08:31:19
root / linksafe
0755
urllib
--
May 20 2024 08:31:19
root / linksafe
0755
venv
--
May 20 2024 08:31:19
root / linksafe
0755
wsgiref
--
May 20 2024 08:31:19
root / linksafe
0755
xml
--
May 20 2024 08:31:19
root / linksafe
0755
xmlrpc
--
May 20 2024 08:31:19
root / linksafe
0755
__future__.py
4.477 KB
April 17 2024 16:58:21
root / linksafe
0644
__phello__.foo.py
0.063 KB
April 17 2024 16:58:20
root / linksafe
0644
_compat_pickle.py
4.236 KB
April 17 2024 16:58:19
root / linksafe
0644
_dummy_thread.py
4.657 KB
April 17 2024 16:58:20
root / linksafe
0644
_markupbase.py
14.256 KB
April 17 2024 16:58:15
root / linksafe
0644
_osx_support.py
18.413 KB
April 17 2024 16:58:20
root / linksafe
0644
_pyio.py
71.196 KB
April 17 2024 16:58:17
root / linksafe
0644
_strptime.py
21.166 KB
April 17 2024 16:58:20
root / linksafe
0644
_sysconfigdata.py
22.307 KB
April 17 2024 16:58:20
root / linksafe
0644
_threading_local.py
7.236 KB
April 17 2024 16:58:15
root / linksafe
0644
_weakrefset.py
5.571 KB
April 17 2024 16:58:14
root / linksafe
0644
abc.py
7.868 KB
April 17 2024 16:58:15
root / linksafe
0644
aifc.py
30.326 KB
April 17 2024 16:58:21
root / linksafe
0644
antigravity.py
0.464 KB
April 17 2024 16:58:16
root / linksafe
0644
argparse.py
86.981 KB
April 17 2024 16:58:20
root / linksafe
0644
ast.py
11.857 KB
April 17 2024 16:58:20
root / linksafe
0644
asynchat.py
11.316 KB
April 17 2024 16:58:19
root / linksafe
0644
asyncore.py
20.267 KB
April 17 2024 16:58:21
root / linksafe
0644
base64.py
13.658 KB
April 17 2024 16:58:17
root / linksafe
0755
bdb.py
21.381 KB
April 17 2024 16:58:19
root / linksafe
0644
binhex.py
13.387 KB
April 17 2024 16:58:14
root / linksafe
0644
bisect.py
2.534 KB
April 17 2024 16:58:13
root / linksafe
0644
bz2.py
18.04 KB
April 17 2024 16:58:20
root / linksafe
0644
cProfile.py
6.212 KB
April 17 2024 16:58:14
root / linksafe
0755
calendar.py
22.402 KB
April 17 2024 16:58:20
root / linksafe
0644
cgi.py
34.721 KB
April 17 2024 16:58:20
root / linksafe
0755
cgitb.py
11.759 KB
April 17 2024 16:58:21
root / linksafe
0644
chunk.py
5.251 KB
April 17 2024 16:58:17
root / linksafe
0644
cmd.py
14.512 KB
April 17 2024 16:58:14
root / linksafe
0644
code.py
9.795 KB
April 17 2024 16:58:16
root / linksafe
0644
codecs.py
35.113 KB
April 17 2024 16:58:15
root / linksafe
0644
codeop.py
5.854 KB
April 17 2024 16:58:14
root / linksafe
0644
colorsys.py
3.604 KB
April 17 2024 16:58:15
root / linksafe
0644
compileall.py
9.515 KB
April 17 2024 16:58:14
root / linksafe
0644
configparser.py
48.278 KB
April 17 2024 16:58:15
root / linksafe
0644
contextlib.py
8.911 KB
April 17 2024 16:58:14
root / linksafe
0644
copy.py
8.78 KB
April 17 2024 16:58:15
root / linksafe
0644
copyreg.py
6.456 KB
April 17 2024 16:58:20
root / linksafe
0644
crypt.py
1.835 KB
April 17 2024 16:58:14
root / linksafe
0644
csv.py
15.806 KB
April 17 2024 16:58:15
root / linksafe
0644
datetime.py
73.197 KB
April 17 2024 16:58:21
root / linksafe
0644
decimal.py
223.201 KB
April 17 2024 16:58:19
root / linksafe
0644
difflib.py
80.585 KB
April 17 2024 16:58:17
root / linksafe
0644
dis.py
9.896 KB
April 17 2024 16:58:15
root / linksafe
0644
doctest.py
100.521 KB
April 17 2024 16:58:15
root / linksafe
0644
dummy_threading.py
2.749 KB
April 17 2024 16:58:14
root / linksafe
0644
filecmp.py
9.372 KB
April 17 2024 16:58:15
root / linksafe
0644
fileinput.py
13.922 KB
April 17 2024 16:58:17
root / linksafe
0644
fnmatch.py
3.089 KB
April 17 2024 16:58:15
root / linksafe
0644
formatter.py
14.58 KB
April 17 2024 16:58:15
root / linksafe
0644
fractions.py
22.493 KB
April 17 2024 16:58:14
root / linksafe
0644
ftplib.py
39.31 KB
April 17 2024 16:58:15
root / linksafe
0644
functools.py
13.277 KB
April 17 2024 16:58:21
root / linksafe
0644
genericpath.py
3.021 KB
April 17 2024 16:58:21
root / linksafe
0644
getopt.py
7.313 KB
April 17 2024 16:58:20
root / linksafe
0644
getpass.py
5.657 KB
April 17 2024 16:58:14
root / linksafe
0644
gettext.py
20.153 KB
April 17 2024 16:58:20
root / linksafe
0644
glob.py
2.771 KB
April 17 2024 16:58:14
root / linksafe
0644
gzip.py
23.831 KB
April 17 2024 16:58:20
root / linksafe
0644
hashlib.py
6.048 KB
April 17 2024 16:58:21
root / linksafe
0644
heapq.py
17.575 KB
April 17 2024 16:58:13
root / linksafe
0644
hmac.py
4.336 KB
April 17 2024 16:58:17
root / linksafe
0644
imaplib.py
48.937 KB
April 17 2024 16:58:20
root / linksafe
0644
imghdr.py
3.445 KB
April 17 2024 16:58:20
root / linksafe
0644
imp.py
9.499 KB
April 17 2024 16:58:15
root / linksafe
0644
inspect.py
77.109 KB
April 17 2024 16:58:19
root / linksafe
0644
io.py
3.203 KB
April 17 2024 16:58:15
root / linksafe
0644
ipaddress.py
68.655 KB
April 17 2024 16:58:20
root / linksafe
0644
keyword.py
2.012 KB
April 17 2024 16:58:20
root / linksafe
0755
linecache.py
3.773 KB
April 17 2024 16:58:16
root / linksafe
0644
locale.py
91.03 KB
April 17 2024 16:58:19
root / linksafe
0644
lzma.py
17.045 KB
April 17 2024 16:58:20
root / linksafe
0644
macpath.py
5.485 KB
April 17 2024 16:58:15
root / linksafe
0644
macurl2path.py
2.668 KB
April 17 2024 16:58:15
root / linksafe
0644
mailbox.py
77.239 KB
April 17 2024 16:58:19
root / linksafe
0644
mailcap.py
7.263 KB
April 17 2024 16:58:14
root / linksafe
0644
mimetypes.py
20.249 KB
April 17 2024 16:58:19
root / linksafe
0644
modulefinder.py
22.654 KB
April 17 2024 16:58:14
root / linksafe
0644
netrc.py
5.612 KB
April 17 2024 16:58:17
root / linksafe
0644
nntplib.py
41.783 KB
April 17 2024 16:58:13
root / linksafe
0644
ntpath.py
19.958 KB
April 17 2024 16:58:14
root / linksafe
0644
nturl2path.py
2.34 KB
April 17 2024 16:58:20
root / linksafe
0644
numbers.py
10.154 KB
April 17 2024 16:58:20
root / linksafe
0644
opcode.py
4.979 KB
April 17 2024 16:58:21
root / linksafe
0644
optparse.py
58.932 KB
April 17 2024 16:58:20
root / linksafe
0644
os.py
33.964 KB
April 17 2024 16:58:14
root / linksafe
0644
os2emxpath.py
4.55 KB
April 17 2024 16:58:15
root / linksafe
0644
pdb.py
59.231 KB
April 17 2024 16:58:16
root / linksafe
0755
pickle.py
46.736 KB
April 17 2024 16:58:17
root / linksafe
0644
pickletools.py
79.442 KB
April 17 2024 16:58:15
root / linksafe
0644
pipes.py
8.707 KB
April 17 2024 16:58:20
root / linksafe
0644
pkgutil.py
21.034 KB
April 17 2024 16:58:15
root / linksafe
0644
platform.py
49.553 KB
April 17 2024 16:58:15
root / linksafe
0755
plistlib.py
14.431 KB
April 17 2024 16:58:13
root / linksafe
0644
poplib.py
11.105 KB
April 17 2024 16:58:13
root / linksafe
0644
posixpath.py
13.92 KB
April 17 2024 16:58:16
root / linksafe
0644
pprint.py
12.402 KB
April 17 2024 16:58:15
root / linksafe
0644
profile.py
20.945 KB
April 17 2024 16:58:17
root / linksafe
0755
pstats.py
25.754 KB
April 17 2024 16:58:14
root / linksafe
0644
pty.py
4.937 KB
April 17 2024 16:58:14
root / linksafe
0644
py_compile.py
6.56 KB
April 17 2024 16:58:19
root / linksafe
0644
pyclbr.py
13.123 KB
April 17 2024 16:58:13
root / linksafe
0644
pydoc.py
99.262 KB
April 17 2024 16:58:15
root / linksafe
0755
queue.py
8.628 KB
April 17 2024 16:58:20
root / linksafe
0644
quopri.py
7.144 KB
April 17 2024 16:58:20
root / linksafe
0755
random.py
25.059 KB
April 17 2024 16:58:14
root / linksafe
0644
re.py
14.622 KB
April 17 2024 16:58:17
root / linksafe
0644
reprlib.py
4.99 KB
April 17 2024 16:58:15
root / linksafe
0644
rlcompleter.py
5.396 KB
April 17 2024 16:58:21
root / linksafe
0644
runpy.py
10.169 KB
April 17 2024 16:58:14
root / linksafe
0644
sched.py
6.249 KB
April 17 2024 16:58:19
root / linksafe
0644
shelve.py
8.05 KB
April 17 2024 16:58:20
root / linksafe
0644
shlex.py
11.232 KB
April 17 2024 16:58:21
root / linksafe
0644
shutil.py
38.229 KB
April 17 2024 16:58:20
root / linksafe
0644
site.py
21.456 KB
April 17 2024 16:58:19
root / linksafe
0644
smtpd.py
29.499 KB
April 17 2024 16:58:16
root / linksafe
0755
smtplib.py
37.13 KB
April 17 2024 16:58:14
root / linksafe
0755
sndhdr.py
6.073 KB
April 17 2024 16:58:20
root / linksafe
0644
socket.py
14.563 KB
April 17 2024 16:58:20
root / linksafe
0644
socketserver.py
23.629 KB
April 17 2024 16:58:21
root / linksafe
0644
sre_compile.py
15.962 KB
April 17 2024 16:58:14
root / linksafe
0644
sre_constants.py
7.062 KB
April 17 2024 16:58:14
root / linksafe
0644
sre_parse.py
29.504 KB
April 17 2024 16:58:16
root / linksafe
0644
ssl.py
23.904 KB
April 17 2024 16:58:19
root / linksafe
0644
stat.py
4.203 KB
April 17 2024 16:58:19
root / linksafe
0644
string.py
9.189 KB
April 17 2024 16:58:20
root / linksafe
0644
stringprep.py
12.614 KB
April 17 2024 16:58:17
root / linksafe
0644
struct.py
0.232 KB
April 17 2024 16:58:16
root / linksafe
0644
subprocess.py
65.994 KB
April 17 2024 16:58:14
root / linksafe
0644
sunau.py
17.112 KB
April 17 2024 16:58:15
root / linksafe
0644
symbol.py
2.003 KB
April 17 2024 16:58:14
root / linksafe
0755
symtable.py
7.21 KB
April 17 2024 16:58:20
root / linksafe
0644
sysconfig.py
24.584 KB
April 17 2024 16:58:20
root / linksafe
0644
tabnanny.py
11.143 KB
April 17 2024 16:58:20
root / linksafe
0755
tarfile.py
86.781 KB
April 17 2024 16:58:15
root / linksafe
0755
telnetlib.py
26.708 KB
April 17 2024 16:58:15
root / linksafe
0644
tempfile.py
22.474 KB
April 17 2024 16:58:14
root / linksafe
0644
textwrap.py
16.102 KB
April 17 2024 16:58:14
root / linksafe
0644
this.py
0.979 KB
April 17 2024 16:58:17
root / linksafe
0644
threading.py
44.571 KB
April 17 2024 16:58:19
root / linksafe
0644
timeit.py
12.104 KB
April 17 2024 16:58:15
root / linksafe
0755
token.py
2.963 KB
April 17 2024 16:58:14
root / linksafe
0644
tokenize.py
24.293 KB
April 17 2024 16:58:20
root / linksafe
0644
trace.py
30.749 KB
April 17 2024 16:58:13
root / linksafe
0755
traceback.py
11.701 KB
April 17 2024 16:58:20
root / linksafe
0644
tty.py
0.858 KB
April 17 2024 16:58:13
root / linksafe
0644
types.py
3.093 KB
April 17 2024 16:58:14
root / linksafe
0644
uu.py
6.607 KB
April 17 2024 16:58:14
root / linksafe
0755
uuid.py
21.825 KB
April 17 2024 16:58:15
root / linksafe
0644
warnings.py
13.501 KB
April 17 2024 16:58:15
root / linksafe
0644
wave.py
18.144 KB
April 17 2024 16:58:15
root / linksafe
0644
weakref.py
11.226 KB
April 17 2024 16:58:19
root / linksafe
0644
webbrowser.py
22.376 KB
April 17 2024 16:58:20
root / linksafe
0755
xdrlib.py
5.255 KB
April 17 2024 16:58:21
root / linksafe
0644
zipfile.py
64.867 KB
April 17 2024 16:58:21
root / linksafe
0644

GRAYBYTE WORDPRESS FILE MANAGER @ 2025
CONTACT ME
Static GIF