GRAYBYTE WORDPRESS FILE MANAGER1335

Server IP : 198.54.121.189 / Your IP : 216.73.216.140
System : Linux premium69.web-hosting.com 4.18.0-553.44.1.lve.el8.x86_64 #1 SMP Thu Mar 13 14:29:12 UTC 2025 x86_64
PHP Version : 7.4.33
Disable Function : NONE
cURL : ON | WGET : ON | Sudo : OFF | Pkexec : OFF
Directory : /opt/alt/python310/lib64/python3.10/
Upload Files :
Current_dir [ Not Writeable ] Document_root [ Writeable ]

Command :


Current File : /opt/alt/python310/lib64/python3.10//fractions.py
# Originally contributed by Sjoerd Mullender.
# Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>.

"""Fraction, infinite-precision, real numbers."""

from decimal import Decimal
import math
import numbers
import operator
import re
import sys

__all__ = ['Fraction']


# Constants related to the hash implementation;  hash(x) is based
# on the reduction of x modulo the prime _PyHASH_MODULUS.
_PyHASH_MODULUS = sys.hash_info.modulus
# Value to be used for rationals that reduce to infinity modulo
# _PyHASH_MODULUS.
_PyHASH_INF = sys.hash_info.inf

_RATIONAL_FORMAT = re.compile(r"""
    \A\s*                      # optional whitespace at the start, then
    (?P<sign>[-+]?)            # an optional sign, then
    (?=\d|\.\d)                # lookahead for digit or .digit
    (?P<num>\d*)               # numerator (possibly empty)
    (?:                        # followed by
       (?:/(?P<denom>\d+))?    # an optional denominator
    |                          # or
       (?:\.(?P<decimal>\d*))? # an optional fractional part
       (?:E(?P<exp>[-+]?\d+))? # and optional exponent
    )
    \s*\Z                      # and optional whitespace to finish
""", re.VERBOSE | re.IGNORECASE)


class Fraction(numbers.Rational):
    """This class implements rational numbers.

    In the two-argument form of the constructor, Fraction(8, 6) will
    produce a rational number equivalent to 4/3. Both arguments must
    be Rational. The numerator defaults to 0 and the denominator
    defaults to 1 so that Fraction(3) == 3 and Fraction() == 0.

    Fractions can also be constructed from:

      - numeric strings similar to those accepted by the
        float constructor (for example, '-2.3' or '1e10')

      - strings of the form '123/456'

      - float and Decimal instances

      - other Rational instances (including integers)

    """

    __slots__ = ('_numerator', '_denominator')

    # We're immutable, so use __new__ not __init__
    def __new__(cls, numerator=0, denominator=None, *, _normalize=True):
        """Constructs a Rational.

        Takes a string like '3/2' or '1.5', another Rational instance, a
        numerator/denominator pair, or a float.

        Examples
        --------

        >>> Fraction(10, -8)
        Fraction(-5, 4)
        >>> Fraction(Fraction(1, 7), 5)
        Fraction(1, 35)
        >>> Fraction(Fraction(1, 7), Fraction(2, 3))
        Fraction(3, 14)
        >>> Fraction('314')
        Fraction(314, 1)
        >>> Fraction('-35/4')
        Fraction(-35, 4)
        >>> Fraction('3.1415') # conversion from numeric string
        Fraction(6283, 2000)
        >>> Fraction('-47e-2') # string may include a decimal exponent
        Fraction(-47, 100)
        >>> Fraction(1.47)  # direct construction from float (exact conversion)
        Fraction(6620291452234629, 4503599627370496)
        >>> Fraction(2.25)
        Fraction(9, 4)
        >>> Fraction(Decimal('1.47'))
        Fraction(147, 100)

        """
        self = super(Fraction, cls).__new__(cls)

        if denominator is None:
            if type(numerator) is int:
                self._numerator = numerator
                self._denominator = 1
                return self

            elif isinstance(numerator, numbers.Rational):
                self._numerator = numerator.numerator
                self._denominator = numerator.denominator
                return self

            elif isinstance(numerator, (float, Decimal)):
                # Exact conversion
                self._numerator, self._denominator = numerator.as_integer_ratio()
                return self

            elif isinstance(numerator, str):
                # Handle construction from strings.
                m = _RATIONAL_FORMAT.match(numerator)
                if m is None:
                    raise ValueError('Invalid literal for Fraction: %r' %
                                     numerator)
                numerator = int(m.group('num') or '0')
                denom = m.group('denom')
                if denom:
                    denominator = int(denom)
                else:
                    denominator = 1
                    decimal = m.group('decimal')
                    if decimal:
                        scale = 10**len(decimal)
                        numerator = numerator * scale + int(decimal)
                        denominator *= scale
                    exp = m.group('exp')
                    if exp:
                        exp = int(exp)
                        if exp >= 0:
                            numerator *= 10**exp
                        else:
                            denominator *= 10**-exp
                if m.group('sign') == '-':
                    numerator = -numerator

            else:
                raise TypeError("argument should be a string "
                                "or a Rational instance")

        elif type(numerator) is int is type(denominator):
            pass # *very* normal case

        elif (isinstance(numerator, numbers.Rational) and
            isinstance(denominator, numbers.Rational)):
            numerator, denominator = (
                numerator.numerator * denominator.denominator,
                denominator.numerator * numerator.denominator
                )
        else:
            raise TypeError("both arguments should be "
                            "Rational instances")

        if denominator == 0:
            raise ZeroDivisionError('Fraction(%s, 0)' % numerator)
        if _normalize:
            g = math.gcd(numerator, denominator)
            if denominator < 0:
                g = -g
            numerator //= g
            denominator //= g
        self._numerator = numerator
        self._denominator = denominator
        return self

    @classmethod
    def from_float(cls, f):
        """Converts a finite float to a rational number, exactly.

        Beware that Fraction.from_float(0.3) != Fraction(3, 10).

        """
        if isinstance(f, numbers.Integral):
            return cls(f)
        elif not isinstance(f, float):
            raise TypeError("%s.from_float() only takes floats, not %r (%s)" %
                            (cls.__name__, f, type(f).__name__))
        return cls(*f.as_integer_ratio())

    @classmethod
    def from_decimal(cls, dec):
        """Converts a finite Decimal instance to a rational number, exactly."""
        from decimal import Decimal
        if isinstance(dec, numbers.Integral):
            dec = Decimal(int(dec))
        elif not isinstance(dec, Decimal):
            raise TypeError(
                "%s.from_decimal() only takes Decimals, not %r (%s)" %
                (cls.__name__, dec, type(dec).__name__))
        return cls(*dec.as_integer_ratio())

    def as_integer_ratio(self):
        """Return the integer ratio as a tuple.

        Return a tuple of two integers, whose ratio is equal to the
        Fraction and with a positive denominator.
        """
        return (self._numerator, self._denominator)

    def limit_denominator(self, max_denominator=1000000):
        """Closest Fraction to self with denominator at most max_denominator.

        >>> Fraction('3.141592653589793').limit_denominator(10)
        Fraction(22, 7)
        >>> Fraction('3.141592653589793').limit_denominator(100)
        Fraction(311, 99)
        >>> Fraction(4321, 8765).limit_denominator(10000)
        Fraction(4321, 8765)

        """
        # Algorithm notes: For any real number x, define a *best upper
        # approximation* to x to be a rational number p/q such that:
        #
        #   (1) p/q >= x, and
        #   (2) if p/q > r/s >= x then s > q, for any rational r/s.
        #
        # Define *best lower approximation* similarly.  Then it can be
        # proved that a rational number is a best upper or lower
        # approximation to x if, and only if, it is a convergent or
        # semiconvergent of the (unique shortest) continued fraction
        # associated to x.
        #
        # To find a best rational approximation with denominator <= M,
        # we find the best upper and lower approximations with
        # denominator <= M and take whichever of these is closer to x.
        # In the event of a tie, the bound with smaller denominator is
        # chosen.  If both denominators are equal (which can happen
        # only when max_denominator == 1 and self is midway between
        # two integers) the lower bound---i.e., the floor of self, is
        # taken.

        if max_denominator < 1:
            raise ValueError("max_denominator should be at least 1")
        if self._denominator <= max_denominator:
            return Fraction(self)

        p0, q0, p1, q1 = 0, 1, 1, 0
        n, d = self._numerator, self._denominator
        while True:
            a = n//d
            q2 = q0+a*q1
            if q2 > max_denominator:
                break
            p0, q0, p1, q1 = p1, q1, p0+a*p1, q2
            n, d = d, n-a*d

        k = (max_denominator-q0)//q1
        bound1 = Fraction(p0+k*p1, q0+k*q1)
        bound2 = Fraction(p1, q1)
        if abs(bound2 - self) <= abs(bound1-self):
            return bound2
        else:
            return bound1

    @property
    def numerator(a):
        return a._numerator

    @property
    def denominator(a):
        return a._denominator

    def __repr__(self):
        """repr(self)"""
        return '%s(%s, %s)' % (self.__class__.__name__,
                               self._numerator, self._denominator)

    def __str__(self):
        """str(self)"""
        if self._denominator == 1:
            return str(self._numerator)
        else:
            return '%s/%s' % (self._numerator, self._denominator)

    def _operator_fallbacks(monomorphic_operator, fallback_operator):
        """Generates forward and reverse operators given a purely-rational
        operator and a function from the operator module.

        Use this like:
        __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)

        In general, we want to implement the arithmetic operations so
        that mixed-mode operations either call an implementation whose
        author knew about the types of both arguments, or convert both
        to the nearest built in type and do the operation there. In
        Fraction, that means that we define __add__ and __radd__ as:

            def __add__(self, other):
                # Both types have numerators/denominator attributes,
                # so do the operation directly
                if isinstance(other, (int, Fraction)):
                    return Fraction(self.numerator * other.denominator +
                                    other.numerator * self.denominator,
                                    self.denominator * other.denominator)
                # float and complex don't have those operations, but we
                # know about those types, so special case them.
                elif isinstance(other, float):
                    return float(self) + other
                elif isinstance(other, complex):
                    return complex(self) + other
                # Let the other type take over.
                return NotImplemented

            def __radd__(self, other):
                # radd handles more types than add because there's
                # nothing left to fall back to.
                if isinstance(other, numbers.Rational):
                    return Fraction(self.numerator * other.denominator +
                                    other.numerator * self.denominator,
                                    self.denominator * other.denominator)
                elif isinstance(other, Real):
                    return float(other) + float(self)
                elif isinstance(other, Complex):
                    return complex(other) + complex(self)
                return NotImplemented


        There are 5 different cases for a mixed-type addition on
        Fraction. I'll refer to all of the above code that doesn't
        refer to Fraction, float, or complex as "boilerplate". 'r'
        will be an instance of Fraction, which is a subtype of
        Rational (r : Fraction <: Rational), and b : B <:
        Complex. The first three involve 'r + b':

            1. If B <: Fraction, int, float, or complex, we handle
               that specially, and all is well.
            2. If Fraction falls back to the boilerplate code, and it
               were to return a value from __add__, we'd miss the
               possibility that B defines a more intelligent __radd__,
               so the boilerplate should return NotImplemented from
               __add__. In particular, we don't handle Rational
               here, even though we could get an exact answer, in case
               the other type wants to do something special.
            3. If B <: Fraction, Python tries B.__radd__ before
               Fraction.__add__. This is ok, because it was
               implemented with knowledge of Fraction, so it can
               handle those instances before delegating to Real or
               Complex.

        The next two situations describe 'b + r'. We assume that b
        didn't know about Fraction in its implementation, and that it
        uses similar boilerplate code:

            4. If B <: Rational, then __radd_ converts both to the
               builtin rational type (hey look, that's us) and
               proceeds.
            5. Otherwise, __radd__ tries to find the nearest common
               base ABC, and fall back to its builtin type. Since this
               class doesn't subclass a concrete type, there's no
               implementation to fall back to, so we need to try as
               hard as possible to return an actual value, or the user
               will get a TypeError.

        """
        def forward(a, b):
            if isinstance(b, (int, Fraction)):
                return monomorphic_operator(a, b)
            elif isinstance(b, float):
                return fallback_operator(float(a), b)
            elif isinstance(b, complex):
                return fallback_operator(complex(a), b)
            else:
                return NotImplemented
        forward.__name__ = '__' + fallback_operator.__name__ + '__'
        forward.__doc__ = monomorphic_operator.__doc__

        def reverse(b, a):
            if isinstance(a, numbers.Rational):
                # Includes ints.
                return monomorphic_operator(a, b)
            elif isinstance(a, numbers.Real):
                return fallback_operator(float(a), float(b))
            elif isinstance(a, numbers.Complex):
                return fallback_operator(complex(a), complex(b))
            else:
                return NotImplemented
        reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
        reverse.__doc__ = monomorphic_operator.__doc__

        return forward, reverse

    # Rational arithmetic algorithms: Knuth, TAOCP, Volume 2, 4.5.1.
    #
    # Assume input fractions a and b are normalized.
    #
    # 1) Consider addition/subtraction.
    #
    # Let g = gcd(da, db). Then
    #
    #              na   nb    na*db ± nb*da
    #     a ± b == -- ± -- == ------------- ==
    #              da   db        da*db
    #
    #              na*(db//g) ± nb*(da//g)    t
    #           == ----------------------- == -
    #                      (da*db)//g         d
    #
    # Now, if g > 1, we're working with smaller integers.
    #
    # Note, that t, (da//g) and (db//g) are pairwise coprime.
    #
    # Indeed, (da//g) and (db//g) share no common factors (they were
    # removed) and da is coprime with na (since input fractions are
    # normalized), hence (da//g) and na are coprime.  By symmetry,
    # (db//g) and nb are coprime too.  Then,
    #
    #     gcd(t, da//g) == gcd(na*(db//g), da//g) == 1
    #     gcd(t, db//g) == gcd(nb*(da//g), db//g) == 1
    #
    # Above allows us optimize reduction of the result to lowest
    # terms.  Indeed,
    #
    #     g2 = gcd(t, d) == gcd(t, (da//g)*(db//g)*g) == gcd(t, g)
    #
    #                       t//g2                   t//g2
    #     a ± b == ----------------------- == ----------------
    #              (da//g)*(db//g)*(g//g2)    (da//g)*(db//g2)
    #
    # is a normalized fraction.  This is useful because the unnormalized
    # denominator d could be much larger than g.
    #
    # We should special-case g == 1 (and g2 == 1), since 60.8% of
    # randomly-chosen integers are coprime:
    # https://en.wikipedia.org/wiki/Coprime_integers#Probability_of_coprimality
    # Note, that g2 == 1 always for fractions, obtained from floats: here
    # g is a power of 2 and the unnormalized numerator t is an odd integer.
    #
    # 2) Consider multiplication
    #
    # Let g1 = gcd(na, db) and g2 = gcd(nb, da), then
    #
    #            na*nb    na*nb    (na//g1)*(nb//g2)
    #     a*b == ----- == ----- == -----------------
    #            da*db    db*da    (db//g1)*(da//g2)
    #
    # Note, that after divisions we're multiplying smaller integers.
    #
    # Also, the resulting fraction is normalized, because each of
    # two factors in the numerator is coprime to each of the two factors
    # in the denominator.
    #
    # Indeed, pick (na//g1).  It's coprime with (da//g2), because input
    # fractions are normalized.  It's also coprime with (db//g1), because
    # common factors are removed by g1 == gcd(na, db).
    #
    # As for addition/subtraction, we should special-case g1 == 1
    # and g2 == 1 for same reason.  That happens also for multiplying
    # rationals, obtained from floats.

    def _add(a, b):
        """a + b"""
        na, da = a.numerator, a.denominator
        nb, db = b.numerator, b.denominator
        g = math.gcd(da, db)
        if g == 1:
            return Fraction(na * db + da * nb, da * db, _normalize=False)
        s = da // g
        t = na * (db // g) + nb * s
        g2 = math.gcd(t, g)
        if g2 == 1:
            return Fraction(t, s * db, _normalize=False)
        return Fraction(t // g2, s * (db // g2), _normalize=False)

    __add__, __radd__ = _operator_fallbacks(_add, operator.add)

    def _sub(a, b):
        """a - b"""
        na, da = a.numerator, a.denominator
        nb, db = b.numerator, b.denominator
        g = math.gcd(da, db)
        if g == 1:
            return Fraction(na * db - da * nb, da * db, _normalize=False)
        s = da // g
        t = na * (db // g) - nb * s
        g2 = math.gcd(t, g)
        if g2 == 1:
            return Fraction(t, s * db, _normalize=False)
        return Fraction(t // g2, s * (db // g2), _normalize=False)

    __sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub)

    def _mul(a, b):
        """a * b"""
        na, da = a.numerator, a.denominator
        nb, db = b.numerator, b.denominator
        g1 = math.gcd(na, db)
        if g1 > 1:
            na //= g1
            db //= g1
        g2 = math.gcd(nb, da)
        if g2 > 1:
            nb //= g2
            da //= g2
        return Fraction(na * nb, db * da, _normalize=False)

    __mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul)

    def _div(a, b):
        """a / b"""
        # Same as _mul(), with inversed b.
        na, da = a.numerator, a.denominator
        nb, db = b.numerator, b.denominator
        g1 = math.gcd(na, nb)
        if g1 > 1:
            na //= g1
            nb //= g1
        g2 = math.gcd(db, da)
        if g2 > 1:
            da //= g2
            db //= g2
        n, d = na * db, nb * da
        if d < 0:
            n, d = -n, -d
        return Fraction(n, d, _normalize=False)

    __truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv)

    def _floordiv(a, b):
        """a // b"""
        return (a.numerator * b.denominator) // (a.denominator * b.numerator)

    __floordiv__, __rfloordiv__ = _operator_fallbacks(_floordiv, operator.floordiv)

    def _divmod(a, b):
        """(a // b, a % b)"""
        da, db = a.denominator, b.denominator
        div, n_mod = divmod(a.numerator * db, da * b.numerator)
        return div, Fraction(n_mod, da * db)

    __divmod__, __rdivmod__ = _operator_fallbacks(_divmod, divmod)

    def _mod(a, b):
        """a % b"""
        da, db = a.denominator, b.denominator
        return Fraction((a.numerator * db) % (b.numerator * da), da * db)

    __mod__, __rmod__ = _operator_fallbacks(_mod, operator.mod)

    def __pow__(a, b):
        """a ** b

        If b is not an integer, the result will be a float or complex
        since roots are generally irrational. If b is an integer, the
        result will be rational.

        """
        if isinstance(b, numbers.Rational):
            if b.denominator == 1:
                power = b.numerator
                if power >= 0:
                    return Fraction(a._numerator ** power,
                                    a._denominator ** power,
                                    _normalize=False)
                elif a._numerator >= 0:
                    return Fraction(a._denominator ** -power,
                                    a._numerator ** -power,
                                    _normalize=False)
                else:
                    return Fraction((-a._denominator) ** -power,
                                    (-a._numerator) ** -power,
                                    _normalize=False)
            else:
                # A fractional power will generally produce an
                # irrational number.
                return float(a) ** float(b)
        else:
            return float(a) ** b

    def __rpow__(b, a):
        """a ** b"""
        if b._denominator == 1 and b._numerator >= 0:
            # If a is an int, keep it that way if possible.
            return a ** b._numerator

        if isinstance(a, numbers.Rational):
            return Fraction(a.numerator, a.denominator) ** b

        if b._denominator == 1:
            return a ** b._numerator

        return a ** float(b)

    def __pos__(a):
        """+a: Coerces a subclass instance to Fraction"""
        return Fraction(a._numerator, a._denominator, _normalize=False)

    def __neg__(a):
        """-a"""
        return Fraction(-a._numerator, a._denominator, _normalize=False)

    def __abs__(a):
        """abs(a)"""
        return Fraction(abs(a._numerator), a._denominator, _normalize=False)

    def __trunc__(a):
        """trunc(a)"""
        if a._numerator < 0:
            return -(-a._numerator // a._denominator)
        else:
            return a._numerator // a._denominator

    def __floor__(a):
        """math.floor(a)"""
        return a.numerator // a.denominator

    def __ceil__(a):
        """math.ceil(a)"""
        # The negations cleverly convince floordiv to return the ceiling.
        return -(-a.numerator // a.denominator)

    def __round__(self, ndigits=None):
        """round(self, ndigits)

        Rounds half toward even.
        """
        if ndigits is None:
            floor, remainder = divmod(self.numerator, self.denominator)
            if remainder * 2 < self.denominator:
                return floor
            elif remainder * 2 > self.denominator:
                return floor + 1
            # Deal with the half case:
            elif floor % 2 == 0:
                return floor
            else:
                return floor + 1
        shift = 10**abs(ndigits)
        # See _operator_fallbacks.forward to check that the results of
        # these operations will always be Fraction and therefore have
        # round().
        if ndigits > 0:
            return Fraction(round(self * shift), shift)
        else:
            return Fraction(round(self / shift) * shift)

    def __hash__(self):
        """hash(self)"""

        # To make sure that the hash of a Fraction agrees with the hash
        # of a numerically equal integer, float or Decimal instance, we
        # follow the rules for numeric hashes outlined in the
        # documentation.  (See library docs, 'Built-in Types').

        try:
            dinv = pow(self._denominator, -1, _PyHASH_MODULUS)
        except ValueError:
            # ValueError means there is no modular inverse.
            hash_ = _PyHASH_INF
        else:
            # The general algorithm now specifies that the absolute value of
            # the hash is
            #    (|N| * dinv) % P
            # where N is self._numerator and P is _PyHASH_MODULUS.  That's
            # optimized here in two ways:  first, for a non-negative int i,
            # hash(i) == i % P, but the int hash implementation doesn't need
            # to divide, and is faster than doing % P explicitly.  So we do
            #    hash(|N| * dinv)
            # instead.  Second, N is unbounded, so its product with dinv may
            # be arbitrarily expensive to compute.  The final answer is the
            # same if we use the bounded |N| % P instead, which can again
            # be done with an int hash() call.  If 0 <= i < P, hash(i) == i,
            # so this nested hash() call wastes a bit of time making a
            # redundant copy when |N| < P, but can save an arbitrarily large
            # amount of computation for large |N|.
            hash_ = hash(hash(abs(self._numerator)) * dinv)
        result = hash_ if self._numerator >= 0 else -hash_
        return -2 if result == -1 else result

    def __eq__(a, b):
        """a == b"""
        if type(b) is int:
            return a._numerator == b and a._denominator == 1
        if isinstance(b, numbers.Rational):
            return (a._numerator == b.numerator and
                    a._denominator == b.denominator)
        if isinstance(b, numbers.Complex) and b.imag == 0:
            b = b.real
        if isinstance(b, float):
            if math.isnan(b) or math.isinf(b):
                # comparisons with an infinity or nan should behave in
                # the same way for any finite a, so treat a as zero.
                return 0.0 == b
            else:
                return a == a.from_float(b)
        else:
            # Since a doesn't know how to compare with b, let's give b
            # a chance to compare itself with a.
            return NotImplemented

    def _richcmp(self, other, op):
        """Helper for comparison operators, for internal use only.

        Implement comparison between a Rational instance `self`, and
        either another Rational instance or a float `other`.  If
        `other` is not a Rational instance or a float, return
        NotImplemented. `op` should be one of the six standard
        comparison operators.

        """
        # convert other to a Rational instance where reasonable.
        if isinstance(other, numbers.Rational):
            return op(self._numerator * other.denominator,
                      self._denominator * other.numerator)
        if isinstance(other, float):
            if math.isnan(other) or math.isinf(other):
                return op(0.0, other)
            else:
                return op(self, self.from_float(other))
        else:
            return NotImplemented

    def __lt__(a, b):
        """a < b"""
        return a._richcmp(b, operator.lt)

    def __gt__(a, b):
        """a > b"""
        return a._richcmp(b, operator.gt)

    def __le__(a, b):
        """a <= b"""
        return a._richcmp(b, operator.le)

    def __ge__(a, b):
        """a >= b"""
        return a._richcmp(b, operator.ge)

    def __bool__(a):
        """a != 0"""
        # bpo-39274: Use bool() because (a._numerator != 0) can return an
        # object which is not a bool.
        return bool(a._numerator)

    # support for pickling, copy, and deepcopy

    def __reduce__(self):
        return (self.__class__, (str(self),))

    def __copy__(self):
        if type(self) == Fraction:
            return self     # I'm immutable; therefore I am my own clone
        return self.__class__(self._numerator, self._denominator)

    def __deepcopy__(self, memo):
        if type(self) == Fraction:
            return self     # My components are also immutable
        return self.__class__(self._numerator, self._denominator)

[ Back ]
Name
Size
Last Modified
Owner / Group
Permissions
Options
..
--
May 13 2025 08:38:35
root / root
0755
__pycache__
--
May 13 2025 08:37:18
root / linksafe
0755
asyncio
--
May 13 2025 08:37:18
root / linksafe
0755
collections
--
May 13 2025 08:37:18
root / linksafe
0755
concurrent
--
May 13 2025 08:37:18
root / linksafe
0755
config-3.10-x86_64-linux-gnu
--
May 13 2025 08:38:35
root / linksafe
0755
ctypes
--
May 13 2025 08:37:18
root / linksafe
0755
curses
--
May 13 2025 08:37:18
root / linksafe
0755
dbm
--
May 13 2025 08:37:18
root / linksafe
0755
distutils
--
May 13 2025 08:37:18
root / linksafe
0755
email
--
May 13 2025 08:37:18
root / linksafe
0755
encodings
--
May 13 2025 08:37:18
root / linksafe
0755
ensurepip
--
May 13 2025 08:37:18
root / linksafe
0755
html
--
May 13 2025 08:37:18
root / linksafe
0755
http
--
May 13 2025 08:37:18
root / linksafe
0755
importlib
--
May 13 2025 08:37:18
root / linksafe
0755
json
--
May 13 2025 08:37:18
root / linksafe
0755
lib-dynload
--
May 13 2025 08:37:18
root / linksafe
0755
lib2to3
--
May 13 2025 08:40:34
root / linksafe
0755
logging
--
May 13 2025 08:37:18
root / linksafe
0755
multiprocessing
--
May 13 2025 08:37:18
root / linksafe
0755
pydoc_data
--
May 13 2025 08:37:18
root / linksafe
0755
site-packages
--
May 13 2025 08:37:18
root / linksafe
0755
sqlite3
--
May 13 2025 08:37:18
root / linksafe
0755
unittest
--
May 13 2025 08:37:18
root / linksafe
0755
urllib
--
May 13 2025 08:37:18
root / linksafe
0755
venv
--
May 13 2025 08:37:18
root / linksafe
0755
wsgiref
--
May 13 2025 08:37:18
root / linksafe
0755
xml
--
May 13 2025 08:37:18
root / linksafe
0755
xmlrpc
--
May 13 2025 08:37:18
root / linksafe
0755
zoneinfo
--
May 13 2025 08:37:18
root / linksafe
0755
LICENSE.txt
13.609 KB
April 08 2025 12:10:59
root / linksafe
0644
__future__.py
5.034 KB
April 08 2025 12:10:59
root / linksafe
0644
__phello__.foo.py
0.063 KB
April 08 2025 12:10:59
root / linksafe
0644
_aix_support.py
3.193 KB
April 08 2025 12:10:59
root / linksafe
0644
_bootsubprocess.py
2.612 KB
April 08 2025 12:10:59
root / linksafe
0644
_collections_abc.py
31.527 KB
April 08 2025 12:10:59
root / linksafe
0644
_compat_pickle.py
8.544 KB
April 08 2025 12:10:59
root / linksafe
0644
_compression.py
5.548 KB
April 08 2025 12:10:59
root / linksafe
0644
_markupbase.py
14.31 KB
April 08 2025 12:10:59
root / linksafe
0644
_osx_support.py
21.276 KB
April 08 2025 12:10:59
root / linksafe
0644
_py_abc.py
6.044 KB
April 08 2025 12:10:59
root / linksafe
0644
_pydecimal.py
223.316 KB
April 08 2025 12:10:59
root / linksafe
0644
_pyio.py
92.253 KB
April 08 2025 12:10:59
root / linksafe
0644
_sitebuiltins.py
3.055 KB
April 08 2025 12:10:59
root / linksafe
0644
_strptime.py
24.685 KB
April 08 2025 12:10:59
root / linksafe
0644
_sysconfigdata__linux_x86_64-linux-gnu.py
40.376 KB
April 23 2025 17:40:11
root / linksafe
0644
_sysconfigdata_d_linux_x86_64-linux-gnu.py
39.808 KB
April 23 2025 17:27:15
root / linksafe
0644
_threading_local.py
7.051 KB
April 08 2025 12:10:59
root / linksafe
0644
_weakrefset.py
5.784 KB
April 08 2025 12:10:59
root / linksafe
0644
abc.py
6.369 KB
April 08 2025 12:10:59
root / linksafe
0644
aifc.py
31.841 KB
April 08 2025 12:10:59
root / linksafe
0644
antigravity.py
0.488 KB
April 08 2025 12:10:59
root / linksafe
0644
argparse.py
96.233 KB
April 08 2025 12:10:59
root / linksafe
0644
ast.py
58.496 KB
April 08 2025 12:10:59
root / linksafe
0644
asynchat.py
11.25 KB
April 08 2025 12:10:59
root / linksafe
0644
asyncore.py
19.793 KB
April 08 2025 12:10:59
root / linksafe
0644
base64.py
20.371 KB
April 08 2025 12:10:59
root / linksafe
0755
bdb.py
31.637 KB
April 08 2025 12:10:59
root / linksafe
0644
binhex.py
14.438 KB
April 08 2025 12:10:59
root / linksafe
0644
bisect.py
3.062 KB
April 08 2025 12:10:59
root / linksafe
0644
bz2.py
11.569 KB
April 08 2025 12:10:59
root / linksafe
0644
cProfile.py
6.211 KB
April 08 2025 12:10:59
root / linksafe
0755
calendar.py
23.999 KB
April 08 2025 12:10:59
root / linksafe
0644
cgi.py
33.312 KB
April 08 2025 12:10:59
root / linksafe
0755
cgitb.py
11.813 KB
April 08 2025 12:10:59
root / linksafe
0644
chunk.py
5.308 KB
April 08 2025 12:10:59
root / linksafe
0644
cmd.py
14.512 KB
April 08 2025 12:10:59
root / linksafe
0644
code.py
10.373 KB
April 08 2025 12:10:59
root / linksafe
0644
codecs.py
35.854 KB
April 08 2025 12:10:59
root / linksafe
0644
codeop.py
5.478 KB
April 08 2025 12:10:59
root / linksafe
0644
colorsys.py
3.923 KB
April 08 2025 12:10:59
root / linksafe
0644
compileall.py
19.777 KB
April 08 2025 12:10:59
root / linksafe
0644
configparser.py
53.332 KB
April 08 2025 12:10:59
root / linksafe
0644
contextlib.py
25.275 KB
April 08 2025 12:10:59
root / linksafe
0644
contextvars.py
0.126 KB
April 08 2025 12:10:59
root / linksafe
0644
copy.py
8.478 KB
April 08 2025 12:10:59
root / linksafe
0644
copyreg.py
7.252 KB
April 08 2025 12:10:59
root / linksafe
0644
crypt.py
3.758 KB
April 08 2025 12:10:59
root / linksafe
0644
csv.py
15.654 KB
April 08 2025 12:10:59
root / linksafe
0644
dataclasses.py
55.068 KB
April 08 2025 12:10:59
root / linksafe
0644
datetime.py
86.021 KB
April 08 2025 12:10:59
root / linksafe
0644
decimal.py
0.313 KB
April 08 2025 12:10:59
root / linksafe
0644
difflib.py
81.355 KB
April 08 2025 12:10:59
root / linksafe
0644
dis.py
19.551 KB
April 08 2025 12:10:59
root / linksafe
0644
doctest.py
102.679 KB
April 08 2025 12:10:59
root / linksafe
0644
enum.py
38.897 KB
April 08 2025 12:10:59
root / linksafe
0644
filecmp.py
9.939 KB
April 08 2025 12:10:59
root / linksafe
0644
fileinput.py
16.057 KB
April 08 2025 12:10:59
root / linksafe
0644
fnmatch.py
6.556 KB
April 08 2025 12:10:59
root / linksafe
0644
fractions.py
27.58 KB
April 08 2025 12:10:59
root / linksafe
0644
ftplib.py
34.664 KB
April 08 2025 12:10:59
root / linksafe
0644
functools.py
37.184 KB
April 08 2025 12:10:59
root / linksafe
0644
genericpath.py
4.858 KB
April 08 2025 12:10:59
root / linksafe
0644
getopt.py
7.313 KB
April 08 2025 12:10:59
root / linksafe
0644
getpass.py
5.85 KB
April 08 2025 12:10:59
root / linksafe
0644
gettext.py
26.627 KB
April 08 2025 12:10:59
root / linksafe
0644
glob.py
7.703 KB
April 08 2025 12:10:59
root / linksafe
0644
graphlib.py
9.349 KB
April 08 2025 12:10:59
root / linksafe
0644
gzip.py
21.337 KB
April 08 2025 12:10:59
root / linksafe
0644
hashlib.py
9.989 KB
April 08 2025 12:10:59
root / linksafe
0644
heapq.py
22.341 KB
April 08 2025 12:10:59
root / linksafe
0644
hmac.py
7.536 KB
April 08 2025 12:10:59
root / linksafe
0644
imaplib.py
53.924 KB
April 08 2025 12:10:59
root / linksafe
0644
imghdr.py
3.719 KB
April 08 2025 12:10:59
root / linksafe
0644
imp.py
10.343 KB
April 08 2025 12:10:59
root / linksafe
0644
inspect.py
121.463 KB
April 08 2025 12:10:59
root / linksafe
0644
io.py
4.098 KB
April 08 2025 12:10:59
root / linksafe
0644
ipaddress.py
76.706 KB
April 08 2025 12:10:59
root / linksafe
0644
keyword.py
1.036 KB
April 08 2025 12:10:59
root / linksafe
0644
linecache.py
5.557 KB
April 08 2025 12:10:59
root / linksafe
0644
locale.py
76.293 KB
April 08 2025 12:10:59
root / linksafe
0644
lzma.py
12.966 KB
April 08 2025 12:10:59
root / linksafe
0644
mailbox.py
76.947 KB
April 08 2025 12:10:59
root / linksafe
0644
mailcap.py
8.902 KB
April 08 2025 12:10:59
root / linksafe
0644
mimetypes.py
22.011 KB
April 08 2025 12:10:59
root / linksafe
0644
modulefinder.py
23.829 KB
April 08 2025 12:10:59
root / linksafe
0644
netrc.py
5.612 KB
April 08 2025 12:10:59
root / linksafe
0644
nntplib.py
40.062 KB
April 08 2025 12:10:59
root / linksafe
0644
ntpath.py
28.79 KB
April 08 2025 12:10:59
root / linksafe
0644
nturl2path.py
2.819 KB
April 08 2025 12:10:59
root / linksafe
0644
numbers.py
10.105 KB
April 08 2025 12:10:59
root / linksafe
0644
opcode.py
5.764 KB
April 08 2025 12:10:59
root / linksafe
0644
operator.py
10.499 KB
April 08 2025 12:10:59
root / linksafe
0644
optparse.py
58.954 KB
April 08 2025 12:10:59
root / linksafe
0644
os.py
38.63 KB
April 08 2025 12:10:59
root / linksafe
0644
pathlib.py
48.413 KB
April 08 2025 12:10:59
root / linksafe
0644
pdb.py
61.756 KB
April 08 2025 12:10:59
root / linksafe
0755
pickle.py
63.427 KB
April 08 2025 12:10:59
root / linksafe
0644
pickletools.py
91.295 KB
April 08 2025 12:10:59
root / linksafe
0644
pipes.py
8.705 KB
April 08 2025 12:10:59
root / linksafe
0644
pkgutil.py
24 KB
April 08 2025 12:10:59
root / linksafe
0644
platform.py
41.051 KB
April 08 2025 12:10:59
root / linksafe
0755
plistlib.py
27.688 KB
April 08 2025 12:10:59
root / linksafe
0644
poplib.py
14.842 KB
April 08 2025 12:10:59
root / linksafe
0644
posixpath.py
15.869 KB
April 08 2025 12:10:59
root / linksafe
0644
pprint.py
23.871 KB
April 08 2025 12:10:59
root / linksafe
0644
profile.py
22.359 KB
April 08 2025 12:10:59
root / linksafe
0755
pstats.py
28.639 KB
April 08 2025 12:10:59
root / linksafe
0644
pty.py
5.091 KB
April 08 2025 12:10:59
root / linksafe
0644
py_compile.py
7.707 KB
April 23 2025 17:23:51
root / linksafe
0644
pyclbr.py
11.129 KB
April 08 2025 12:10:59
root / linksafe
0644
pydoc.py
107.034 KB
April 08 2025 12:10:59
root / linksafe
0755
queue.py
11.227 KB
April 08 2025 12:10:59
root / linksafe
0644
quopri.py
7.11 KB
April 08 2025 12:10:59
root / linksafe
0755
random.py
32.442 KB
April 08 2025 12:10:59
root / linksafe
0644
re.py
15.488 KB
April 08 2025 12:10:59
root / linksafe
0644
reprlib.py
5.144 KB
April 08 2025 12:10:59
root / linksafe
0644
rlcompleter.py
7.634 KB
April 08 2025 12:10:59
root / linksafe
0644
runpy.py
12.804 KB
April 08 2025 12:10:59
root / linksafe
0644
sched.py
6.202 KB
April 08 2025 12:10:59
root / linksafe
0644
secrets.py
1.988 KB
April 08 2025 12:10:59
root / linksafe
0644
selectors.py
19.078 KB
April 08 2025 12:10:59
root / linksafe
0644
shelve.py
8.359 KB
April 08 2025 12:10:59
root / linksafe
0644
shlex.py
13.185 KB
April 08 2025 12:10:59
root / linksafe
0644
shutil.py
53.293 KB
April 08 2025 12:10:59
root / linksafe
0644
signal.py
2.381 KB
April 08 2025 12:10:59
root / linksafe
0644
site.py
22.389 KB
April 08 2025 12:10:59
root / linksafe
0644
smtpd.py
34.354 KB
April 08 2025 12:10:59
root / linksafe
0755
smtplib.py
44.366 KB
April 08 2025 12:10:59
root / linksafe
0755
sndhdr.py
6.933 KB
April 08 2025 12:10:59
root / linksafe
0644
socket.py
36.139 KB
April 08 2025 12:10:59
root / linksafe
0644
socketserver.py
26.656 KB
April 08 2025 12:10:59
root / linksafe
0644
sre_compile.py
27.317 KB
April 08 2025 12:10:59
root / linksafe
0644
sre_constants.py
7.009 KB
April 08 2025 12:10:59
root / linksafe
0644
sre_parse.py
39.823 KB
April 08 2025 12:10:59
root / linksafe
0644
ssl.py
52.632 KB
April 08 2025 12:10:59
root / linksafe
0644
stat.py
5.356 KB
April 08 2025 12:10:59
root / linksafe
0644
statistics.py
42.192 KB
April 08 2025 12:10:59
root / linksafe
0644
string.py
10.318 KB
April 08 2025 12:10:59
root / linksafe
0644
stringprep.py
12.614 KB
April 08 2025 12:10:59
root / linksafe
0644
struct.py
0.251 KB
April 08 2025 12:10:59
root / linksafe
0644
subprocess.py
82.927 KB
April 08 2025 12:10:59
root / linksafe
0644
sunau.py
17.732 KB
April 08 2025 12:10:59
root / linksafe
0644
symtable.py
9.978 KB
April 08 2025 12:10:59
root / linksafe
0644
sysconfig.py
26.962 KB
April 08 2025 12:10:59
root / linksafe
0644
tabnanny.py
11.047 KB
April 08 2025 12:10:59
root / linksafe
0755
tarfile.py
105.13 KB
April 08 2025 12:10:59
root / linksafe
0755
telnetlib.py
22.709 KB
April 08 2025 12:10:59
root / linksafe
0644
tempfile.py
28.778 KB
April 08 2025 12:10:59
root / linksafe
0644
textwrap.py
19.309 KB
April 08 2025 12:10:59
root / linksafe
0644
this.py
0.979 KB
April 08 2025 12:10:59
root / linksafe
0644
threading.py
55.412 KB
April 23 2025 17:23:51
root / linksafe
0644
timeit.py
13.191 KB
April 08 2025 12:10:59
root / linksafe
0755
token.py
2.33 KB
April 08 2025 12:10:59
root / linksafe
0644
tokenize.py
25.313 KB
April 08 2025 12:10:59
root / linksafe
0644
trace.py
28.544 KB
April 08 2025 12:10:59
root / linksafe
0755
traceback.py
25.607 KB
April 08 2025 12:10:59
root / linksafe
0644
tracemalloc.py
17.624 KB
April 08 2025 12:10:59
root / linksafe
0644
tty.py
0.858 KB
April 08 2025 12:10:59
root / linksafe
0644
types.py
9.88 KB
April 08 2025 12:10:59
root / linksafe
0644
typing.py
90.388 KB
April 08 2025 12:10:59
root / linksafe
0644
uu.py
7.106 KB
April 23 2025 17:41:06
root / linksafe
0644
uuid.py
26.855 KB
April 08 2025 12:10:59
root / linksafe
0644
warnings.py
19.227 KB
April 08 2025 12:10:59
root / linksafe
0644
wave.py
17.582 KB
April 08 2025 12:10:59
root / linksafe
0644
weakref.py
21.055 KB
April 08 2025 12:10:59
root / linksafe
0644
webbrowser.py
23.689 KB
April 08 2025 12:10:59
root / linksafe
0755
xdrlib.py
5.774 KB
April 08 2025 12:10:59
root / linksafe
0644
zipapp.py
7.358 KB
April 08 2025 12:10:59
root / linksafe
0644
zipfile.py
88.087 KB
April 08 2025 12:10:59
root / linksafe
0644
zipimport.py
30.167 KB
April 08 2025 12:10:59
root / linksafe
0644

GRAYBYTE WORDPRESS FILE MANAGER @ 2025
CONTACT ME
Static GIF