GRAYBYTE WORDPRESS FILE MANAGER3766

Server IP : 198.54.121.189 / Your IP : 216.73.216.34
System : Linux premium69.web-hosting.com 4.18.0-553.44.1.lve.el8.x86_64 #1 SMP Thu Mar 13 14:29:12 UTC 2025 x86_64
PHP Version : 7.4.33
Disable Function : NONE
cURL : ON | WGET : ON | Sudo : OFF | Pkexec : OFF
Directory : /lib64/python3.6/
Upload Files :
Current_dir [ Not Writeable ] Document_root [ Writeable ]

Command :


Current File : /lib64/python3.6//statistics.py
"""
Basic statistics module.

This module provides functions for calculating statistics of data, including
averages, variance, and standard deviation.

Calculating averages
--------------------

==================  =============================================
Function            Description
==================  =============================================
mean                Arithmetic mean (average) of data.
harmonic_mean       Harmonic mean of data.
median              Median (middle value) of data.
median_low          Low median of data.
median_high         High median of data.
median_grouped      Median, or 50th percentile, of grouped data.
mode                Mode (most common value) of data.
==================  =============================================

Calculate the arithmetic mean ("the average") of data:

>>> mean([-1.0, 2.5, 3.25, 5.75])
2.625


Calculate the standard median of discrete data:

>>> median([2, 3, 4, 5])
3.5


Calculate the median, or 50th percentile, of data grouped into class intervals
centred on the data values provided. E.g. if your data points are rounded to
the nearest whole number:

>>> median_grouped([2, 2, 3, 3, 3, 4])  #doctest: +ELLIPSIS
2.8333333333...

This should be interpreted in this way: you have two data points in the class
interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in
the class interval 3.5-4.5. The median of these data points is 2.8333...


Calculating variability or spread
---------------------------------

==================  =============================================
Function            Description
==================  =============================================
pvariance           Population variance of data.
variance            Sample variance of data.
pstdev              Population standard deviation of data.
stdev               Sample standard deviation of data.
==================  =============================================

Calculate the standard deviation of sample data:

>>> stdev([2.5, 3.25, 5.5, 11.25, 11.75])  #doctest: +ELLIPSIS
4.38961843444...

If you have previously calculated the mean, you can pass it as the optional
second argument to the four "spread" functions to avoid recalculating it:

>>> data = [1, 2, 2, 4, 4, 4, 5, 6]
>>> mu = mean(data)
>>> pvariance(data, mu)
2.5


Exceptions
----------

A single exception is defined: StatisticsError is a subclass of ValueError.

"""

__all__ = [ 'StatisticsError',
            'pstdev', 'pvariance', 'stdev', 'variance',
            'median',  'median_low', 'median_high', 'median_grouped',
            'mean', 'mode', 'harmonic_mean',
          ]

import collections
import decimal
import math
import numbers

from fractions import Fraction
from decimal import Decimal
from itertools import groupby, chain
from bisect import bisect_left, bisect_right



# === Exceptions ===

class StatisticsError(ValueError):
    pass


# === Private utilities ===

def _sum(data, start=0):
    """_sum(data [, start]) -> (type, sum, count)

    Return a high-precision sum of the given numeric data as a fraction,
    together with the type to be converted to and the count of items.

    If optional argument ``start`` is given, it is added to the total.
    If ``data`` is empty, ``start`` (defaulting to 0) is returned.


    Examples
    --------

    >>> _sum([3, 2.25, 4.5, -0.5, 1.0], 0.75)
    (<class 'float'>, Fraction(11, 1), 5)

    Some sources of round-off error will be avoided:

    # Built-in sum returns zero.
    >>> _sum([1e50, 1, -1e50] * 1000)
    (<class 'float'>, Fraction(1000, 1), 3000)

    Fractions and Decimals are also supported:

    >>> from fractions import Fraction as F
    >>> _sum([F(2, 3), F(7, 5), F(1, 4), F(5, 6)])
    (<class 'fractions.Fraction'>, Fraction(63, 20), 4)

    >>> from decimal import Decimal as D
    >>> data = [D("0.1375"), D("0.2108"), D("0.3061"), D("0.0419")]
    >>> _sum(data)
    (<class 'decimal.Decimal'>, Fraction(6963, 10000), 4)

    Mixed types are currently treated as an error, except that int is
    allowed.
    """
    count = 0
    n, d = _exact_ratio(start)
    partials = {d: n}
    partials_get = partials.get
    T = _coerce(int, type(start))
    for typ, values in groupby(data, type):
        T = _coerce(T, typ)  # or raise TypeError
        for n,d in map(_exact_ratio, values):
            count += 1
            partials[d] = partials_get(d, 0) + n
    if None in partials:
        # The sum will be a NAN or INF. We can ignore all the finite
        # partials, and just look at this special one.
        total = partials[None]
        assert not _isfinite(total)
    else:
        # Sum all the partial sums using builtin sum.
        # FIXME is this faster if we sum them in order of the denominator?
        total = sum(Fraction(n, d) for d, n in sorted(partials.items()))
    return (T, total, count)


def _isfinite(x):
    try:
        return x.is_finite()  # Likely a Decimal.
    except AttributeError:
        return math.isfinite(x)  # Coerces to float first.


def _coerce(T, S):
    """Coerce types T and S to a common type, or raise TypeError.

    Coercion rules are currently an implementation detail. See the CoerceTest
    test class in test_statistics for details.
    """
    # See http://bugs.python.org/issue24068.
    assert T is not bool, "initial type T is bool"
    # If the types are the same, no need to coerce anything. Put this
    # first, so that the usual case (no coercion needed) happens as soon
    # as possible.
    if T is S:  return T
    # Mixed int & other coerce to the other type.
    if S is int or S is bool:  return T
    if T is int:  return S
    # If one is a (strict) subclass of the other, coerce to the subclass.
    if issubclass(S, T):  return S
    if issubclass(T, S):  return T
    # Ints coerce to the other type.
    if issubclass(T, int):  return S
    if issubclass(S, int):  return T
    # Mixed fraction & float coerces to float (or float subclass).
    if issubclass(T, Fraction) and issubclass(S, float):
        return S
    if issubclass(T, float) and issubclass(S, Fraction):
        return T
    # Any other combination is disallowed.
    msg = "don't know how to coerce %s and %s"
    raise TypeError(msg % (T.__name__, S.__name__))


def _exact_ratio(x):
    """Return Real number x to exact (numerator, denominator) pair.

    >>> _exact_ratio(0.25)
    (1, 4)

    x is expected to be an int, Fraction, Decimal or float.
    """
    try:
        # Optimise the common case of floats. We expect that the most often
        # used numeric type will be builtin floats, so try to make this as
        # fast as possible.
        if type(x) is float or type(x) is Decimal:
            return x.as_integer_ratio()
        try:
            # x may be an int, Fraction, or Integral ABC.
            return (x.numerator, x.denominator)
        except AttributeError:
            try:
                # x may be a float or Decimal subclass.
                return x.as_integer_ratio()
            except AttributeError:
                # Just give up?
                pass
    except (OverflowError, ValueError):
        # float NAN or INF.
        assert not _isfinite(x)
        return (x, None)
    msg = "can't convert type '{}' to numerator/denominator"
    raise TypeError(msg.format(type(x).__name__))


def _convert(value, T):
    """Convert value to given numeric type T."""
    if type(value) is T:
        # This covers the cases where T is Fraction, or where value is
        # a NAN or INF (Decimal or float).
        return value
    if issubclass(T, int) and value.denominator != 1:
        T = float
    try:
        # FIXME: what do we do if this overflows?
        return T(value)
    except TypeError:
        if issubclass(T, Decimal):
            return T(value.numerator)/T(value.denominator)
        else:
            raise


def _counts(data):
    # Generate a table of sorted (value, frequency) pairs.
    table = collections.Counter(iter(data)).most_common()
    if not table:
        return table
    # Extract the values with the highest frequency.
    maxfreq = table[0][1]
    for i in range(1, len(table)):
        if table[i][1] != maxfreq:
            table = table[:i]
            break
    return table


def _find_lteq(a, x):
    'Locate the leftmost value exactly equal to x'
    i = bisect_left(a, x)
    if i != len(a) and a[i] == x:
        return i
    raise ValueError


def _find_rteq(a, l, x):
    'Locate the rightmost value exactly equal to x'
    i = bisect_right(a, x, lo=l)
    if i != (len(a)+1) and a[i-1] == x:
        return i-1
    raise ValueError


def _fail_neg(values, errmsg='negative value'):
    """Iterate over values, failing if any are less than zero."""
    for x in values:
        if x < 0:
            raise StatisticsError(errmsg)
        yield x


# === Measures of central tendency (averages) ===

def mean(data):
    """Return the sample arithmetic mean of data.

    >>> mean([1, 2, 3, 4, 4])
    2.8

    >>> from fractions import Fraction as F
    >>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)])
    Fraction(13, 21)

    >>> from decimal import Decimal as D
    >>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")])
    Decimal('0.5625')

    If ``data`` is empty, StatisticsError will be raised.
    """
    if iter(data) is data:
        data = list(data)
    n = len(data)
    if n < 1:
        raise StatisticsError('mean requires at least one data point')
    T, total, count = _sum(data)
    assert count == n
    return _convert(total/n, T)


def harmonic_mean(data):
    """Return the harmonic mean of data.

    The harmonic mean, sometimes called the subcontrary mean, is the
    reciprocal of the arithmetic mean of the reciprocals of the data,
    and is often appropriate when averaging quantities which are rates
    or ratios, for example speeds. Example:

    Suppose an investor purchases an equal value of shares in each of
    three companies, with P/E (price/earning) ratios of 2.5, 3 and 10.
    What is the average P/E ratio for the investor's portfolio?

    >>> harmonic_mean([2.5, 3, 10])  # For an equal investment portfolio.
    3.6

    Using the arithmetic mean would give an average of about 5.167, which
    is too high.

    If ``data`` is empty, or any element is less than zero,
    ``harmonic_mean`` will raise ``StatisticsError``.
    """
    # For a justification for using harmonic mean for P/E ratios, see
    # http://fixthepitch.pellucid.com/comps-analysis-the-missing-harmony-of-summary-statistics/
    # http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2621087
    if iter(data) is data:
        data = list(data)
    errmsg = 'harmonic mean does not support negative values'
    n = len(data)
    if n < 1:
        raise StatisticsError('harmonic_mean requires at least one data point')
    elif n == 1:
        x = data[0]
        if isinstance(x, (numbers.Real, Decimal)):
            if x < 0:
                raise StatisticsError(errmsg)
            return x
        else:
            raise TypeError('unsupported type')
    try:
        T, total, count = _sum(1/x for x in _fail_neg(data, errmsg))
    except ZeroDivisionError:
        return 0
    assert count == n
    return _convert(n/total, T)


# FIXME: investigate ways to calculate medians without sorting? Quickselect?
def median(data):
    """Return the median (middle value) of numeric data.

    When the number of data points is odd, return the middle data point.
    When the number of data points is even, the median is interpolated by
    taking the average of the two middle values:

    >>> median([1, 3, 5])
    3
    >>> median([1, 3, 5, 7])
    4.0

    """
    data = sorted(data)
    n = len(data)
    if n == 0:
        raise StatisticsError("no median for empty data")
    if n%2 == 1:
        return data[n//2]
    else:
        i = n//2
        return (data[i - 1] + data[i])/2


def median_low(data):
    """Return the low median of numeric data.

    When the number of data points is odd, the middle value is returned.
    When it is even, the smaller of the two middle values is returned.

    >>> median_low([1, 3, 5])
    3
    >>> median_low([1, 3, 5, 7])
    3

    """
    data = sorted(data)
    n = len(data)
    if n == 0:
        raise StatisticsError("no median for empty data")
    if n%2 == 1:
        return data[n//2]
    else:
        return data[n//2 - 1]


def median_high(data):
    """Return the high median of data.

    When the number of data points is odd, the middle value is returned.
    When it is even, the larger of the two middle values is returned.

    >>> median_high([1, 3, 5])
    3
    >>> median_high([1, 3, 5, 7])
    5

    """
    data = sorted(data)
    n = len(data)
    if n == 0:
        raise StatisticsError("no median for empty data")
    return data[n//2]


def median_grouped(data, interval=1):
    """Return the 50th percentile (median) of grouped continuous data.

    >>> median_grouped([1, 2, 2, 3, 4, 4, 4, 4, 4, 5])
    3.7
    >>> median_grouped([52, 52, 53, 54])
    52.5

    This calculates the median as the 50th percentile, and should be
    used when your data is continuous and grouped. In the above example,
    the values 1, 2, 3, etc. actually represent the midpoint of classes
    0.5-1.5, 1.5-2.5, 2.5-3.5, etc. The middle value falls somewhere in
    class 3.5-4.5, and interpolation is used to estimate it.

    Optional argument ``interval`` represents the class interval, and
    defaults to 1. Changing the class interval naturally will change the
    interpolated 50th percentile value:

    >>> median_grouped([1, 3, 3, 5, 7], interval=1)
    3.25
    >>> median_grouped([1, 3, 3, 5, 7], interval=2)
    3.5

    This function does not check whether the data points are at least
    ``interval`` apart.
    """
    data = sorted(data)
    n = len(data)
    if n == 0:
        raise StatisticsError("no median for empty data")
    elif n == 1:
        return data[0]
    # Find the value at the midpoint. Remember this corresponds to the
    # centre of the class interval.
    x = data[n//2]
    for obj in (x, interval):
        if isinstance(obj, (str, bytes)):
            raise TypeError('expected number but got %r' % obj)
    try:
        L = x - interval/2  # The lower limit of the median interval.
    except TypeError:
        # Mixed type. For now we just coerce to float.
        L = float(x) - float(interval)/2

    # Uses bisection search to search for x in data with log(n) time complexity
    # Find the position of leftmost occurrence of x in data
    l1 = _find_lteq(data, x)
    # Find the position of rightmost occurrence of x in data[l1...len(data)]
    # Assuming always l1 <= l2
    l2 = _find_rteq(data, l1, x)
    cf = l1
    f = l2 - l1 + 1
    return L + interval*(n/2 - cf)/f


def mode(data):
    """Return the most common data point from discrete or nominal data.

    ``mode`` assumes discrete data, and returns a single value. This is the
    standard treatment of the mode as commonly taught in schools:

    >>> mode([1, 1, 2, 3, 3, 3, 3, 4])
    3

    This also works with nominal (non-numeric) data:

    >>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
    'red'

    If there is not exactly one most common value, ``mode`` will raise
    StatisticsError.
    """
    # Generate a table of sorted (value, frequency) pairs.
    table = _counts(data)
    if len(table) == 1:
        return table[0][0]
    elif table:
        raise StatisticsError(
                'no unique mode; found %d equally common values' % len(table)
                )
    else:
        raise StatisticsError('no mode for empty data')


# === Measures of spread ===

# See http://mathworld.wolfram.com/Variance.html
#     http://mathworld.wolfram.com/SampleVariance.html
#     http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
#
# Under no circumstances use the so-called "computational formula for
# variance", as that is only suitable for hand calculations with a small
# amount of low-precision data. It has terrible numeric properties.
#
# See a comparison of three computational methods here:
# http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation/

def _ss(data, c=None):
    """Return sum of square deviations of sequence data.

    If ``c`` is None, the mean is calculated in one pass, and the deviations
    from the mean are calculated in a second pass. Otherwise, deviations are
    calculated from ``c`` as given. Use the second case with care, as it can
    lead to garbage results.
    """
    if c is None:
        c = mean(data)
    T, total, count = _sum((x-c)**2 for x in data)
    # The following sum should mathematically equal zero, but due to rounding
    # error may not.
    U, total2, count2 = _sum((x-c) for x in data)
    assert T == U and count == count2
    total -=  total2**2/len(data)
    assert not total < 0, 'negative sum of square deviations: %f' % total
    return (T, total)


def variance(data, xbar=None):
    """Return the sample variance of data.

    data should be an iterable of Real-valued numbers, with at least two
    values. The optional argument xbar, if given, should be the mean of
    the data. If it is missing or None, the mean is automatically calculated.

    Use this function when your data is a sample from a population. To
    calculate the variance from the entire population, see ``pvariance``.

    Examples:

    >>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
    >>> variance(data)
    1.3720238095238095

    If you have already calculated the mean of your data, you can pass it as
    the optional second argument ``xbar`` to avoid recalculating it:

    >>> m = mean(data)
    >>> variance(data, m)
    1.3720238095238095

    This function does not check that ``xbar`` is actually the mean of
    ``data``. Giving arbitrary values for ``xbar`` may lead to invalid or
    impossible results.

    Decimals and Fractions are supported:

    >>> from decimal import Decimal as D
    >>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
    Decimal('31.01875')

    >>> from fractions import Fraction as F
    >>> variance([F(1, 6), F(1, 2), F(5, 3)])
    Fraction(67, 108)

    """
    if iter(data) is data:
        data = list(data)
    n = len(data)
    if n < 2:
        raise StatisticsError('variance requires at least two data points')
    T, ss = _ss(data, xbar)
    return _convert(ss/(n-1), T)


def pvariance(data, mu=None):
    """Return the population variance of ``data``.

    data should be an iterable of Real-valued numbers, with at least one
    value. The optional argument mu, if given, should be the mean of
    the data. If it is missing or None, the mean is automatically calculated.

    Use this function to calculate the variance from the entire population.
    To estimate the variance from a sample, the ``variance`` function is
    usually a better choice.

    Examples:

    >>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]
    >>> pvariance(data)
    1.25

    If you have already calculated the mean of the data, you can pass it as
    the optional second argument to avoid recalculating it:

    >>> mu = mean(data)
    >>> pvariance(data, mu)
    1.25

    This function does not check that ``mu`` is actually the mean of ``data``.
    Giving arbitrary values for ``mu`` may lead to invalid or impossible
    results.

    Decimals and Fractions are supported:

    >>> from decimal import Decimal as D
    >>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
    Decimal('24.815')

    >>> from fractions import Fraction as F
    >>> pvariance([F(1, 4), F(5, 4), F(1, 2)])
    Fraction(13, 72)

    """
    if iter(data) is data:
        data = list(data)
    n = len(data)
    if n < 1:
        raise StatisticsError('pvariance requires at least one data point')
    T, ss = _ss(data, mu)
    return _convert(ss/n, T)


def stdev(data, xbar=None):
    """Return the square root of the sample variance.

    See ``variance`` for arguments and other details.

    >>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
    1.0810874155219827

    """
    var = variance(data, xbar)
    try:
        return var.sqrt()
    except AttributeError:
        return math.sqrt(var)


def pstdev(data, mu=None):
    """Return the square root of the population variance.

    See ``pvariance`` for arguments and other details.

    >>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
    0.986893273527251

    """
    var = pvariance(data, mu)
    try:
        return var.sqrt()
    except AttributeError:
        return math.sqrt(var)

[ Back ]
Name
Size
Last Modified
Owner / Group
Permissions
Options
..
--
July 11 2025 16:48:16
root / root
0555
__pycache__
--
July 02 2025 13:48:21
root / root
0755
asyncio
--
July 02 2025 13:48:21
root / root
0755
collections
--
July 02 2025 13:48:21
root / root
0755
concurrent
--
July 02 2025 13:48:21
root / root
0755
config-3.6m-x86_64-linux-gnu
--
July 02 2025 13:48:22
root / root
0755
ctypes
--
July 02 2025 13:48:21
root / root
0755
curses
--
July 02 2025 13:48:21
root / root
0755
dbm
--
July 02 2025 13:48:21
root / root
0755
distutils
--
July 02 2025 13:48:21
root / root
0755
email
--
July 02 2025 13:48:21
root / root
0755
encodings
--
July 02 2025 13:48:21
root / root
0755
ensurepip
--
July 02 2025 13:48:21
root / root
0755
html
--
July 02 2025 13:48:21
root / root
0755
http
--
July 02 2025 13:48:21
root / root
0755
importlib
--
July 02 2025 13:48:21
root / root
0755
json
--
July 02 2025 13:48:21
root / root
0755
lib-dynload
--
July 02 2025 13:48:21
root / root
0755
lib2to3
--
July 02 2025 13:48:21
root / root
0755
logging
--
July 02 2025 13:48:21
root / root
0755
multiprocessing
--
July 02 2025 13:48:21
root / root
0755
pydoc_data
--
July 02 2025 13:48:21
root / root
0755
site-packages
--
July 11 2025 16:48:16
root / root
0755
sqlite3
--
July 02 2025 13:48:21
root / root
0755
test
--
July 02 2025 13:48:21
root / root
0755
unittest
--
July 02 2025 13:48:21
root / root
0755
urllib
--
July 02 2025 13:48:21
root / root
0755
venv
--
July 02 2025 13:48:21
root / root
0755
wsgiref
--
July 02 2025 13:48:21
root / root
0755
xml
--
July 02 2025 13:48:21
root / root
0755
xmlrpc
--
July 02 2025 13:48:21
root / root
0755
__future__.py
4.728 KB
December 23 2018 21:37:14
root / root
0644
__phello__.foo.py
0.063 KB
December 23 2018 21:37:14
root / root
0644
_bootlocale.py
1.271 KB
December 23 2018 21:37:14
root / root
0644
_collections_abc.py
25.773 KB
December 23 2018 21:37:14
root / root
0644
_compat_pickle.py
8.544 KB
December 23 2018 21:37:14
root / root
0644
_compression.py
5.215 KB
December 23 2018 21:37:14
root / root
0644
_dummy_thread.py
4.998 KB
December 23 2018 21:37:14
root / root
0644
_markupbase.py
14.256 KB
December 23 2018 21:37:14
root / root
0644
_osx_support.py
18.689 KB
December 23 2018 21:37:14
root / root
0644
_pydecimal.py
224.832 KB
December 23 2018 21:37:14
root / root
0644
_pyio.py
86.032 KB
December 23 2018 21:37:14
root / root
0644
_sitebuiltins.py
3.042 KB
December 23 2018 21:37:14
root / root
0644
_strptime.py
24.167 KB
December 23 2018 21:37:14
root / root
0644
_sysconfigdata_dm_linux_x86_64-linux-gnu.py
29.483 KB
July 01 2025 22:10:37
root / root
0644
_sysconfigdata_m_linux_x86_64-linux-gnu.py
29.655 KB
July 01 2025 22:14:06
root / root
0644
_threading_local.py
7.045 KB
December 23 2018 21:37:14
root / root
0644
_weakrefset.py
5.571 KB
December 23 2018 21:37:14
root / root
0644
abc.py
8.522 KB
December 23 2018 21:37:14
root / root
0644
aifc.py
31.693 KB
December 23 2018 21:37:14
root / root
0644
antigravity.py
0.466 KB
December 23 2018 21:37:14
root / root
0644
argparse.py
88.254 KB
December 23 2018 21:37:14
root / root
0644
ast.py
11.881 KB
December 23 2018 21:37:14
root / root
0644
asynchat.py
11.063 KB
December 23 2018 21:37:14
root / root
0644
asyncore.py
19.687 KB
December 23 2018 21:37:14
root / root
0644
base64.py
19.91 KB
December 23 2018 21:37:14
root / root
0755
bdb.py
23.004 KB
December 23 2018 21:37:14
root / root
0644
binhex.py
13.627 KB
December 23 2018 21:37:14
root / root
0644
bisect.py
2.534 KB
December 23 2018 21:37:14
root / root
0644
bz2.py
12.186 KB
December 23 2018 21:37:14
root / root
0644
cProfile.py
5.254 KB
December 23 2018 21:37:14
root / root
0755
calendar.py
22.669 KB
December 23 2018 21:37:14
root / root
0644
cgi.py
36.347 KB
July 01 2025 22:09:53
root / root
0755
cgitb.py
11.736 KB
December 23 2018 21:37:14
root / root
0644
chunk.py
5.298 KB
December 23 2018 21:37:14
root / root
0644
cmd.py
14.512 KB
December 23 2018 21:37:14
root / root
0644
code.py
10.365 KB
December 23 2018 21:37:14
root / root
0644
codecs.py
35.426 KB
December 23 2018 21:37:14
root / root
0644
codeop.py
5.854 KB
December 23 2018 21:37:14
root / root
0644
colorsys.py
3.969 KB
December 23 2018 21:37:14
root / root
0644
compileall.py
11.841 KB
December 23 2018 21:37:14
root / root
0644
configparser.py
52.336 KB
December 23 2018 21:37:14
root / root
0644
contextlib.py
12.854 KB
December 23 2018 21:37:14
root / root
0644
copy.py
8.608 KB
December 23 2018 21:37:14
root / root
0644
copyreg.py
6.843 KB
December 23 2018 21:37:14
root / root
0644
crypt.py
1.82 KB
December 23 2018 21:37:14
root / root
0644
csv.py
15.801 KB
December 23 2018 21:37:14
root / root
0644
datetime.py
80.111 KB
December 23 2018 21:37:14
root / root
0644
decimal.py
0.313 KB
December 23 2018 21:37:14
root / root
0644
difflib.py
82.399 KB
December 23 2018 21:37:14
root / root
0644
dis.py
17.707 KB
December 23 2018 21:37:14
root / root
0644
doctest.py
101.944 KB
December 23 2018 21:37:14
root / root
0644
dummy_threading.py
2.749 KB
December 23 2018 21:37:14
root / root
0644
enum.py
32.818 KB
December 23 2018 21:37:14
root / root
0644
filecmp.py
9.6 KB
December 23 2018 21:37:14
root / root
0644
fileinput.py
14.132 KB
December 23 2018 21:37:14
root / root
0644
fnmatch.py
3.092 KB
December 23 2018 21:37:14
root / root
0644
formatter.py
14.788 KB
December 23 2018 21:37:14
root / root
0644
fractions.py
23.085 KB
December 23 2018 21:37:14
root / root
0644
ftplib.py
34.782 KB
July 01 2025 22:09:53
root / root
0644
functools.py
30.611 KB
December 23 2018 21:37:14
root / root
0644
genericpath.py
4.91 KB
July 01 2025 22:09:53
root / root
0644
getopt.py
7.313 KB
December 23 2018 21:37:14
root / root
0644
getpass.py
5.854 KB
December 23 2018 21:37:14
root / root
0644
gettext.py
21.025 KB
December 23 2018 21:37:14
root / root
0644
glob.py
5.506 KB
December 23 2018 21:37:14
root / root
0644
gzip.py
19.857 KB
December 23 2018 21:37:14
root / root
0644
hashlib.py
8.593 KB
July 01 2025 22:09:53
root / root
0644
heapq.py
22.392 KB
December 23 2018 21:37:14
root / root
0644
hmac.py
6.231 KB
July 01 2025 22:09:53
root / root
0644
imaplib.py
52.046 KB
December 23 2018 21:37:14
root / root
0644
imghdr.py
3.706 KB
December 23 2018 21:37:14
root / root
0644
imp.py
10.419 KB
December 23 2018 21:37:14
root / root
0644
inspect.py
114.217 KB
December 23 2018 21:37:14
root / root
0644
io.py
3.435 KB
December 23 2018 21:37:14
root / root
0644
ipaddress.py
75.994 KB
July 01 2025 22:09:53
root / root
0644
keyword.py
2.167 KB
December 23 2018 21:37:14
root / root
0755
linecache.py
5.188 KB
December 23 2018 21:37:14
root / root
0644
locale.py
75.488 KB
December 23 2018 21:37:14
root / root
0644
lzma.py
12.679 KB
December 23 2018 21:37:14
root / root
0644
macpath.py
5.831 KB
December 23 2018 21:37:14
root / root
0644
macurl2path.py
2.668 KB
December 23 2018 21:37:14
root / root
0644
mailbox.py
76.781 KB
December 23 2018 21:37:14
root / root
0644
mailcap.py
8.854 KB
July 01 2025 22:09:53
root / root
0644
mimetypes.py
20.549 KB
December 23 2018 21:37:14
root / root
0644
modulefinder.py
22.487 KB
December 23 2018 21:37:14
root / root
0644
netrc.py
5.551 KB
December 23 2018 21:37:14
root / root
0644
nntplib.py
42.068 KB
December 23 2018 21:37:14
root / root
0644
ntpath.py
22.553 KB
December 23 2018 21:37:14
root / root
0644
nturl2path.py
2.387 KB
December 23 2018 21:37:14
root / root
0644
numbers.py
10.003 KB
December 23 2018 21:37:14
root / root
0644
opcode.py
5.686 KB
December 23 2018 21:37:14
root / root
0644
operator.py
10.608 KB
December 23 2018 21:37:14
root / root
0644
optparse.py
58.956 KB
December 23 2018 21:37:14
root / root
0644
os.py
36.646 KB
December 23 2018 21:37:14
root / root
0644
pathlib.py
45.154 KB
July 01 2025 22:09:53
root / root
0644
pdb.py
59.883 KB
December 23 2018 21:37:14
root / root
0755
pickle.py
54.386 KB
December 23 2018 21:37:14
root / root
0644
pickletools.py
89.624 KB
December 23 2018 21:37:14
root / root
0644
pipes.py
8.707 KB
December 23 2018 21:37:14
root / root
0644
pkgutil.py
20.815 KB
December 23 2018 21:37:14
root / root
0644
platform.py
46.107 KB
July 01 2025 22:09:53
root / root
0755
plistlib.py
31.534 KB
July 01 2025 22:09:53
root / root
0644
poplib.py
14.613 KB
December 23 2018 21:37:14
root / root
0644
posixpath.py
15.941 KB
July 01 2025 22:09:53
root / root
0644
pprint.py
20.371 KB
December 23 2018 21:37:14
root / root
0644
profile.py
21.513 KB
December 23 2018 21:37:14
root / root
0755
pstats.py
25.941 KB
December 23 2018 21:37:14
root / root
0644
pty.py
4.651 KB
December 23 2018 21:37:14
root / root
0644
py_compile.py
7.013 KB
December 23 2018 21:37:14
root / root
0644
pyclbr.py
13.24 KB
December 23 2018 21:37:14
root / root
0644
pydoc.py
101.075 KB
July 01 2025 22:14:42
root / root
0644
queue.py
8.574 KB
December 23 2018 21:37:14
root / root
0644
quopri.py
7.092 KB
December 23 2018 21:37:14
root / root
0755
random.py
26.799 KB
December 23 2018 21:37:14
root / root
0644
re.py
15.188 KB
December 23 2018 21:37:14
root / root
0644
reprlib.py
5.211 KB
December 23 2018 21:37:14
root / root
0644
rlcompleter.py
6.931 KB
December 23 2018 21:37:14
root / root
0644
runpy.py
11.679 KB
December 23 2018 21:37:14
root / root
0644
sched.py
6.358 KB
December 23 2018 21:37:14
root / root
0644
secrets.py
1.99 KB
December 23 2018 21:37:14
root / root
0644
selectors.py
18.982 KB
December 23 2018 21:37:14
root / root
0644
shelve.py
8.315 KB
December 23 2018 21:37:14
root / root
0644
shlex.py
12.652 KB
December 23 2018 21:37:14
root / root
0644
shutil.py
39.872 KB
July 01 2025 22:09:53
root / root
0644
signal.py
2.073 KB
December 23 2018 21:37:14
root / root
0644
site.py
20.77 KB
July 01 2025 22:09:53
root / root
0644
smtpd.py
33.905 KB
December 23 2018 21:37:14
root / root
0755
smtplib.py
43.182 KB
December 23 2018 21:37:14
root / root
0755
sndhdr.py
6.922 KB
December 23 2018 21:37:14
root / root
0644
socket.py
26.8 KB
December 23 2018 21:37:14
root / root
0644
socketserver.py
26.377 KB
December 23 2018 21:37:14
root / root
0644
sre_compile.py
18.885 KB
December 23 2018 21:37:14
root / root
0644
sre_constants.py
6.661 KB
December 23 2018 21:37:14
root / root
0644
sre_parse.py
35.68 KB
December 23 2018 21:37:14
root / root
0644
ssl.py
43.466 KB
July 01 2025 22:09:53
root / root
0644
stat.py
4.92 KB
December 23 2018 21:37:14
root / root
0644
statistics.py
20.188 KB
December 23 2018 21:37:14
root / root
0644
string.py
11.519 KB
December 23 2018 21:37:14
root / root
0644
stringprep.py
12.614 KB
December 23 2018 21:37:14
root / root
0644
struct.py
0.251 KB
December 23 2018 21:37:14
root / root
0644
subprocess.py
60.878 KB
December 23 2018 21:37:14
root / root
0644
sunau.py
17.671 KB
December 23 2018 21:37:14
root / root
0644
symbol.py
2.069 KB
December 23 2018 21:37:14
root / root
0755
symtable.py
7.106 KB
December 23 2018 21:37:14
root / root
0644
sysconfig.py
24.293 KB
July 01 2025 22:14:40
root / root
0644
tabnanny.py
11.144 KB
December 23 2018 21:37:14
root / root
0755
tarfile.py
108.896 KB
July 01 2025 22:09:53
root / root
0755
telnetlib.py
22.594 KB
December 23 2018 21:37:14
root / root
0644
tempfile.py
27.408 KB
July 01 2025 22:09:53
root / root
0644
textwrap.py
19.1 KB
December 23 2018 21:37:14
root / root
0644
this.py
0.979 KB
December 23 2018 21:37:14
root / root
0644
threading.py
48.961 KB
July 01 2025 22:09:53
root / root
0644
timeit.py
13.029 KB
December 23 2018 21:37:14
root / root
0755
token.py
3.003 KB
December 23 2018 21:37:14
root / root
0644
tokenize.py
28.805 KB
December 23 2018 21:37:14
root / root
0644
trace.py
28.06 KB
December 23 2018 21:37:14
root / root
0755
traceback.py
22.908 KB
December 23 2018 21:37:14
root / root
0644
tracemalloc.py
16.268 KB
December 23 2018 21:37:14
root / root
0644
tty.py
0.858 KB
December 23 2018 21:37:14
root / root
0644
types.py
8.662 KB
December 23 2018 21:37:14
root / root
0644
typing.py
78.393 KB
December 23 2018 21:37:14
root / root
0644
uu.py
6.604 KB
December 23 2018 21:37:14
root / root
0755
uuid.py
23.457 KB
July 01 2025 22:09:53
root / root
0644
warnings.py
18.055 KB
December 23 2018 21:37:14
root / root
0644
wave.py
17.294 KB
December 23 2018 21:37:14
root / root
0644
weakref.py
19.986 KB
December 23 2018 21:37:14
root / root
0644
webbrowser.py
21.257 KB
December 23 2018 21:37:14
root / root
0755
xdrlib.py
5.774 KB
December 23 2018 21:37:14
root / root
0644
zipapp.py
6.989 KB
December 23 2018 21:37:14
root / root
0644
zipfile.py
78.051 KB
July 01 2025 22:09:53
root / root
0644

GRAYBYTE WORDPRESS FILE MANAGER @ 2025
CONTACT ME
Static GIF